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SUMMARY

This report summarizes the results of a 12-month study of real-time
computer simulation requirements for the Rotor System Research Aircraft
(RSRA). The report develops scaled equations suitable for simulation of the
rotor system. These equations form the basis for consideration of both digital
and hybrid mechanizafion for real time simulation. For all-digital simulation
estimates of the required speed in terms of equivalent operations per second are
developed based on the complexity of the equations and the required integration
frame rates, For both conventional hybrid simulation and hybrid simulation
using time-shared analog elements the amount of required equipment is
estimated along with a consideration of the dynamic errors. It is concluded
that conventional hybrid mechanization using analog simulation of those rotor
equations which involve rotor-spin frequencies (this constitutes the bulk of the
equations) requires too much analog equipment. Hybrid simulation using time-
sharing techniques for the analog elements appears possible with a reasonable
amount of analog equipment. All-digital simulation with affordable general-
purpose computers is not possible because of speed limitations, but specially-
configured digital computers do have the required speed and constitute the

recommended approach,
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l. INTRODUCTION

This report presents the results of a 12-month study of real-time
computer simulation requirements for the Rotor System Research Aircraft
(RSRA). The original math model to be used as a basis for the study included
only the equations for the rotor system and was furnished by the Simulation
Sciences Division of the NASA Ames Research Center:.l These equations
were originally developed by Sikorsky Aircraft and have also been used
extensively by the NASA Langley Research Center. At both Langley and Ames
major difficulties have arisen in trying to simulate the RSRA in real time,
largely because of the complexity of the rotor model. This motivated the
present study, which originally had the objective of developing a hybrid
computer mechanization of the rotor equations in order to permit adequate
real-time simulation.

In order to better understand the RSRA equations, and in particular
the rotor system equations, the simplifications in the equations and the
frequency content in the various state variables, the equations were rederived
from first principles (see Appendix A) and rewritten in scaled, dimensionless
form (Appendix B). In addition to the rotor-system equations the six-degree-
of-freedom rigid aircraft equations have also been included with the exception
of the aerodynamic terms. Thus the only aerodynamic forces considered in
the model are the aerodynamic forces acting on the rotor blade segments.

These forces, however, are predominant and also the complexity associated

1Mackie, D. Brian and Thomas S. Alderete, '""A Real-Time Dual Processor
Simulation of the Rotor System Research Aircraft,' NASA TN-D-8328,

January, 1977.



with calculating them and the resulting blade motion and forces is predominant
in the computer simulation of the RSRA. For this reason the RSRA model
considered in this report is felt to be reasonable as a basis for comparing
different computer mechanizations. The additional computation required for
the fuselage, tail, and wing aerodynamic forces should not change substantially
the conclusions of the study. This is especially true when one considers that
the rotor blade equations in their entirety are not only more complex but also
contain much higher frequencies than the aircraft equations.

In the rotor model each blade is represented as a rigid body with two
degrees of freedom (lagging and flapping). The model can be altered to allow
flexible blades by using normal coordinates for the elastic degrees of freedom,
but this would further increase the equation complexity and high-frequency
content of the problem. It is probably not necessary for simulation associated
with either man-in-the-loop or control-system studies.

In Chapter 2 the scaled equations in Appendix B are used as a basis
for a total count of various computational operations. This count, in turn,
allows requirement estimates for various types of computer mechanization
of the equations. Chapter 3 discusses the requirements for all-digital
mechanization, Chapter 4 for conventional hybrid mechanization and Chapter 5
for hybrid mechanization using a time-shared analog system for computing
blade forces. Finally, Chapter 6 provides summary recommendations

as a result of the study.




2. COMPUTATIONAL OPERATIONS REQUIRED TO IMPLEMENT
THE RSRA MODEL

2.1 Basic Model

The math model for the RSRA is developed in Appendix A. Figure 2.1
in Section A. 2 in the appendix shows a block diagram of the equations in vector
form. The six-degree-of-freedom rigid aircraft equations are shown in block 1
of the figure. The equations for the two degrees of freedom (lagging and flapping)
for each of the rotor blades are shown in blocks 9 and 12. Blocks 2 through 8
represent the equations for transforming the angular and translational velocity
and acceleration components of the aircraft to velocity and acceleration
components along each rotor blade. Block 10 represents the computation of
aerodynamic forces (lift and drag) on each blade segment and block 11 represents
the calculation of the resulting moments on each blade, as needed for solving
the blade equations of motion. Finally, blocks 13 through 15 represent the
conversion of individual blade forces to overall force and moment components
acting on the rigid aircraft.

In Appendix A the scalar equations in each of the 15 blocks in Figure 2.1
are developed in the 15 respective subsections of A.2. In Appendix B these
equations are rewritten in dimensionless form as needed for analog/hybrid or
fixed -point digital solution. It is the equations of Appendix B which are used as
the basis for determining real-time computer requirements. Certain
modifications, such as subtracting off the principal centrifugal acceleration
term in computing blade accelerations, are made in the equations in Appendix B
to improve scaling and avoid taking small differences of large quantities,

These modifications appear necessary in order to use the RSRA rotor model



in analog or 16-bit fixed-point digital simulation. They are probably not
needed for floating-point or 24 bit fixed-point digital computation. The
complexity added to the equations with these modifications (the equations are
still exact) is minimal,

The equations in Appendix B do not have any terms dropped for simpli-
fication purposes. This could be done in a number of cases (e.g., dropping
terms involving the product of sines of two small angles) but the resulting
simplifications in the equations would not be very substantial. In general the
equations are similar to the ARC equa.f:ions1 except in the approach for computing
;Sj and BJ_, the time-rate-of-change of the lagging and flapping angles,
respectively, for the jth blade. In the ARC equations 6J and /3J are computed
by approximate equations of motion, from which isj, 6J_, Bj’ and BJ_ are computed
assuming a periodic fourier series form for the solution. In Appendices A
and B the exact blade equations are integrated to compute blade angular
velocity components, which are then subtracted from rotating shaft-axis
angular velocity components to compute ;SJ_ and BJ respectively. These in turn
are integrated to obtain 6J. and BJ_. The equation complexity is comparable with
the ARC equations. Actual computer simulation will be needed to determine
which method gives better results,

Table 2.1 summarizes the operations count involved in each of the
computational blocks. The operations shown are needed to computé the right-

hand side of all equations, including those with first time derivitives on the

1Mackie and Alderete, NASA-TN- D-8328, op. cit,



left side. Thus the additional operations needed to implement the numerical
integration formulas are not included in the count. This is because those
operations are simple and quite small in number compared with the operations
required to complete each pass through the calculation of all the state-variable
derivitives, which is what Table 2.1 does represent. The table shows the
count based on N rotor blades with s segments per blade. Where the equations
must be solved for each blade, the operations count is multiplied by N; where
the equations must be solved for each segment of each blade, the operations
count is multiplied by Ns.

It should be noted that there are some alternate ways of mechanizing some
of the equation terms. For example, in Eq. (2. 1) the term (1 - cos ‘Bj) is
counted as a one-variable function, whereas it might be acceptable to compute
the term approximately as 0.5 sz. Similarly, the term (1 - cos 6j cos Bj)
in Eq. (13.2) is counted as a two-variable function, whereas it might be accurate
enough to compute it approximately as (sz + BJ_Z)/Z. Also, in Eq. (10.14),
Appendix A, the equation for segment angle of attack, O”I‘.RANS.k' is counted as
a two-variable function, whereas it can alternatively be mecha.ilized as a
combination of boolean and algebraic computations1 .

In the count of multiple/divides in Table 2.1 a separate column is
shown for digital and analog mechanization. This is because multiplications of
variables by constants require multiply operations in digital computation,

whereas they can be implemented using coefficient devices in analog computation.

1Ma,ckie and Alderete, NASA-TN D-8328, op. cit.




Table 2.1 Summary of Operations Count for Solving the RSRA Equations for
N Blades, s Segments per Blade

Block #,

Fig 2.1, Ap.A

1.

10.

11.
12.
13.

14.

15.

Eq.# in # Mult/Div's

Total Operations Count

# # Trig #1 Var #2 Var # Sq.

Ap. B Digital Analog Adds Fncts Fnct's Fnct's Roots
(1.7-1.9) 14 8 9 4
(1.12-1.14) 9 3 3
(1.16-1.18) 6 6 3
(1.19-1.21) 21 21 10 2
(2.2-2.4) 8 0 5 "
(2.5-2.7) 4N 4N 2N 2N
(2.8-2.9) ™ N 3N 4N
(3.1-3.3) 8 0 5
(3.4-3.5) 2N 2N N
(4.3-4.5) 6 0 3
(4.6-4.8) 11 0 8
(5.3-5.5) 15 6 12
(5.7-5.9) 8 0 5
(6.1-6.3) TN 4N 5N
(7.1-7.3) 4N 4N 2N
(7.4-7.6) 12N 6N 9N
(8.1-8.3) 10N 10N 5N
(8.6-8.8) 6Ns 0 3Ns
(9.1-9.3) 12N 10N TN
(9.5-9.6) 9N 3N 6N
(10.7-10.9) 11Ns 10Ns 3Ns
(10.3,4,ApA) 4Ns 4Ns Ns Ns
(10.5) Ns Ns Ns Ns
(10. 23,ApA) 6N N N(5+s) 2N
(10.12,ApA) 6Ns 6Ns 2Ns 2Ns
(10.15ApA) 2Ns Ns Ns Ns
(10.14,16,17, ApA) 3Ns
(11.1-11.2) N(312s) O N(22s) N
(12.1-12.2) 4N ZN 3N N
(13.1-13.3) 18N 8N ™™ N
(13.6-13.8) 3N 0 3Ns
{(14.1-14.3) 10N 10N TN
(14.4-14.6) 6N 6N 4N
(14.8-14.10) N 0 3(N-1)
(14.11-14.13) 8 0 5
(15.2-15.3) 3N N 2N
(15.5-15.7) 2N 2N 0
{15.8-15.10) 3N 0 3(N-1)
(15.11-15.13) 8 0 5
(15.15-15,17) 9 0 6 . L
131 44 73 6
+ + + +
126N 80N 75N 8N ZN N
+ + + + +
32Ns 22Ns 18Ns 2Ns 3Ns 3Ns
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At the end of Table 2.1 is shown a total count for each of the operation
categories. Where a count in multiplied by N, the number of operations
depends on the number of rotor blades, N. It also means that those equations
involve the rotating blade frequency QS, typically the order of 30 radians per
second, and N can range up to 6. Where a count is multiplied by Ns the number
of operations depends not only on the blade count N, but also the number of
segments s taken per blade. A typical value for s is 5, so that Ns might be
6 x 5 = 30. Hence those operations multiplied by Ns can become very
numerous indeed. They also clearly involve the rotor frequency Q.

The total operations count for each column in Table 2.1 is used in the
next three sections to estimate the requirements for real time digital and
hybrid simulation. It should be noted that the equations in Appendices A and
B and hence Table 2.1 do not include the aerodynamic forces due to aircraft
fuselage, wing and tail, nor do they include rotor downwash effects. It is
believed that this omission does not affect substantially the conclusions in the

next three sections.



3. ALL-DIGITAL SIMULATION

3.1 Choice of Integration Method

The choice of numerical integration method for implementing an
all-digital simulation of the RSRA is important in establishing the re-
quired integration frame rates and the corresponding estimate of digital
operations per second based on Table 2.1, For non real-time helicopter
simulation, studies have shown that the 4th=order Runge ~Kutta method is a
good choicez. Although RK-4 gives good accuracy for fairly large integra-
tion step size and also has good stability characteristics, it does require
four passes through the equations (four derivative evaluations)per integra-
tion step. It also requires input data points one-half and one step ahead
of the current point in time for evaluation of the required derivatives,

This is a problem in real time simulation with external inputs unless ex-
trapolation algorithms are used on the inputs.

If dynamic accuracies of the order of one percent are adequate for
RSRA flight simulation, which we believe they are, then 2nd-order Runge
Kutta (RK-2) may be preferable over fourth order (RK-4). It still suffers
from the real-time data input problem noted above, however.

The data input problem is eliminated by using a multistep predictor
algorithm such as Adams-Bashforth. Such numerical integration algorithms

have the added advantage of requiring only one derivative evaluation per

2, Davis, J.M,, R.,L. Bennett, and B. L, Blankenship, "Rotorcraft
Flight Simulation with Aeroelastic Rotor and Improve Aerodynamic
Representation'', USAAMRDL -TR-74-10A, Fort Eustis, Va,, June, 1974.



integration step, the other derivatives needed for the algorithm having
been already evaluated in previous steps. Also, for dynamic accuracy
in the area of one percent, 2nd order Adams-Bashforth may be a good
compromise and has indeed been widely used in digital flight simulation.

In lieu of actually trying various integration schemes on the full
RSRA equations, the most effect analysis technique is to consider lin-
earized equations about some trim or steady-state .condition. In this case
the overall linearized set of equations will have n characteristic roots,
i. e, the system transfer function will have n poles. With the use of a
partial fraction expansion the system can then be decomposed into separate
paralleled first and second order linear systems, The errors in transfer
functions and/or characteristic roots due to any integration algorithm can
be studied by considering the errors in the individual first and second
order systems due to each algorithm. Then by superposition the overall
dynamic error can be estimated.

For example, with z-transform analysis methods3 we can show that
using RK-2 integration, the damping _ratio and fractional frequency errors

in simulating an underdamped second-order system are the following:

A ~

E-62(3¢-28%) @D’ - (5-£0+th @D’ (3.1)
A

%-1;(%-%§2)(aT)2,aT<<1 (3.2)

3. Gilbert, E.G.,"Dynamic Error Analysis of Digital and Combined
Analog-Digital Computer Systems'", SIMULATION, Vol. 6, No. 4, April,
1966, pp. 241-257,



Here £ is the exact damping ratio and é\ the damping ratio resulting from
use of RK-2. Similarly, w is the exact root frequency and g the frequency
when using RK-2, T is the integration interval and a the undamped natural
frequency of the system. For given accuracy requirements in £ and w
Egs. (3.1) and (3.2) can be used to compute aT and hence the number of
frames (integration steps) per cycle of the transient oscillation exhibited
by the second-order system,

As an illustration, letaT = 0.2. This corresponds to 5 integration
steps per radian or 31.4 steps per cycle, Let £ = 0.1 and assume we use
RK-2. Then from Egs. (3.1) a.r:\d (3.2) we find that 2 - £ = 0. 001 (damping
ratio is .10l instead of .1) and % -1 =, 0064 (frequency is 0. 64% high).

The counterparts of Eqs. (3.1) and (3.2) are more complex for

RK-4. For £ = 0 the formulas are given by3

p AN 5
=0 §-§=§=;(aT) (3.3)
A 4
w ~ 2
" -1 = “1s (aT) aT <<1 (3.4)
For the case considered above for RK-2, namely £ = .1, numerical solu-

tion of the z-transform equations shows that with RK-4 using aT = 0.4

A
(2.5 integration steps per radian or 15.7 per cycle), £ - £ = 0, 00059,

A
w fw=-l=-0,0036 (3.6%). In this case RK-2 and RK-4 give comparable
accuracy when the step-size for RK-4 is twice as big, which actually

means the same number of passes (derivative evaluations) per integration

step., Since RK-4 errors depend on (aT)4 compared with (a.T)2 for RK-2,

3. Gilbert, op,cit
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higher accuracy simulation requiring smaller step sizes would favor use

of RK-4,
For 2nd-order Adams-Bashforth (AB-2) the following formula

counterparts to Eqs. (3.1)and (3.2) can be derived:

E-t it _;fj - 22 2| vy (3.5)
A 5 209 2 169 g
w - I2 2
:_1___ lg (aT)", aT << 1 (3.6)

Using AB-2 in simulating a second order system with damping ratio £ = 0.1
and aT = 0.1 (62. 8 integration steps per cycle) we find from numerical
solution of the z-transform equations that /5_5,\ - £ = 0,00101 and 8 [w-1l=

0. 00412 (0.4%). The damping ratio error is the same as that for RK-2
with aT = 0.2 (31.4 steps /cycle) and the frequency error is about 2/3 that
of RK-2, Both schemes under these conditions require the same number
of passes (derivative evaluations) per integration step. This is because
RK-~2 requires two passes per step versus one per step for AB-2.

On the basis of the above type of analysis we conclude that for
dynamic accuracy of the order of one percent 2nd order Adams-Bashforth
with aT somewhere between 0.1 and 0. 2 will be satisfactory, i.e., say
~ 50 integration steps per cycle of the highest important problem frequency.
One difficulty with Adams-Bashforth is the startup problem, but for an
ongoing real-time simulation this shouldn®t result in significant errors.
3rd-~order Adams-Bashforth shoulci probably also be considered and

analyzed,

11



3.2, Required Integration Frame Rates

If we settle on 2nd-order Adams Bashforth as a proposed integra-
tion scheme with 50 steps per cycle of highest problem frequency, then
the next consideration in real-time digital simulation is an estimate of the
highest problem frequencies in the RSRA, For the rigid aircraft itself
1l hertz is a reasonable estimate, When non-elastic rotor blades are
considered, then the maximum rotor speed, roughly 30 radians per second
or about 5 hertz, is a dominant high frequency. This suggests a minimum
of 5 x 50 = 250 integration steps per second (4 millisecond step size)
using AB-2 wherever the rotor-blades are involved in the equations. In-
cidentally, 50 integration steps per cycle corresponds to one step every
7.2 degrees of azimuthal advance for the rotor, a result not inconsistent
with Houck's conclusions4. His studies showed that somewhat larger
steps can be taken, but he was using a higher-order integration algorithm
(RK-4, we believe). There has been some speculation that the integration
frame rate should be based on a highest problem frequency equal to the
rotor speed times the number of blades. Nevertheless, we will assume
a 4 millisecond integration step using 2nd order Adams-Bashforth (one
pass per step) to analyze the real-time digital computer requirements.

3.3 Required Digital Operations per Second for the Real-Time RSRA
Simulation

Let us assume 6 rotor blades with 5 segments per blade as

4, Houck, J.A,, "Computational Aspects of Real-Time Simulation of
Rotary-Wing Aircraft', Masters Thesis, George Washington University,
May, 1976.
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representative of a worst case RSRA simulation, Then N =6 and s =5 in
Table 2.1, which results in the breakdown of digital eperations per pass
shown in Table 3.1. Clearly an overwhelming fraction of the total opera-
tions are dependent on the blade number, N, and hence involve the rotor
spin frequency of 30 rad/sec. Very little would be saved by solving the
non-N dependent equations at a lower frame rate.

From Table 3.1 rough estimates of actual frame times required
for one pass through the equations and hence one integration step (assum-
ing AB-2) can be made for specific digital computers. The actual number
of individual digital operations (load, store, add, multiply, sign-test,
etc. ) for each of the categories in Table 3.1 can be estimated, assuming
a conventional general purpose computer with no pipeli.ni.ngs. For ex-
ample, to compute a function of two variables takes 34 operations (10 adds,
6 multiply/divides, 13 loads, 1 store, and a nominal 4 sign tests). Since
the multiply/divide time on many general-purpose computers takes roughly
4 times the time required for the other operations, we use the concept of
normalized operations by weighting all multiply/divides by a factor of 4,
Using this concept the above two-variable function computation takes 46
normalized operations per pass. Extending this concept to the total count
in Table 3.1 yields 23,603 normalized digital operations required per pass

through the RSRA equations. Since typical general purpose computers in use

5, Howe, R. M., and J, Paul Landauer, "A Quantitative Method of Speed

Comparison between Analog /Hybrid and Digital Computers', IEEE Com-
puter Magazine, Vol. 9, No. 7, July, 1976, pp. 31-36.

13



Table 3.1 Digital Operations per Derivative Evaluation for N = 6 Blades,
s = 5 Segments per Blade

Operations
Independent
of Nor s

Operations
dependent
on N =6

Operations
dependent
on Ns= 30

Grand Total

#

-M-~H /Div's

131

756

960

1847

#

Adds

73

450

540

1063

14

# Trig
Fnct's

48

60

114

#1Var #2 Var # Sq.
Fnct's Fnct's Roots

12 6
90 90
12 96 91



today take an average of 1 to 6 microseconds per operation (large super
computers excluded) the frame time would range between 23. 6 and 142
milliseconds, far more than our 4 millisecond goal for real-time RSRA
simulation. And we haven't included fuselage, wing, and tail aerodynamic
forces in our RSRA model, which will add somewhat more time per frame.
Assuming 50,000 normalized digital operations per pass as a rough
overall estimate, including overhead, we conclude that a general purpose
digital computer capable of 12. 5 million operations per second (50,000x
250 hertz) is needed for the real-time RSRA simulation., The alternative
is to use a specially configured digital computer with pipelining and some
parallelism. Computers in this category with processing speeds in the
correct range to solve the RSRA problem are, or soon will be, available
at reasonable cost. Higher level compilers (e.g,,Fortran IV) are a long
way off for such machines, however, so that assembly language programm-
ing will be required, at least for some time. If analysis shows that floating-
point versions of such machines are fast enough, then clearly that is the
preferred alternate. With the scaling techniques used to develop the
equations in Appendix B we are also convinced that a 16-bit fixed point
digital mechanization can also do the job, if that approach becomes

necessary.

15



4., CONVENTIONAL HYBRID SIMULATION

4.1 Basic Approach

From the previous section it is clear that the speed capabilities of
small to medium-size general-purpose digital computers are at least an order
of magnitude below the requirements for a real-time RSRA simulation. One
possible alternative would be to use conventional all-parallel analog
mechanization for the portions of the simulation involving the rotor frequencies
(30 hertz) and digital mechanization for the low speed (rigid airframe)
simulation. Unfortunately, reference to Table 3.1 shows that roughly 95 percent
of the computational load involves the rotor frequencies (all the N or Ns
dependent operations). With a conventional hybrid approach this implies a
very sizeable analog requirement.

4.2 Hybrid Requirement

Let us assume that a typical analog console includes as many as
64 multipliers. In Table 3.1 the total multiple/divide count was based on
digital mechanization. If we go back to Table 2.1 where the number of
multiply/divides was also tabulated assuming analog mechanization, we calculate
the following multiply/divide count for N = 6,8 = 5:

# multipliers/dividers = 80 x 6 + 22 x 30 = 1140
Assuming 64 multipliers per analog console, this implies 18 analog consoles!
Also, the 96 two-variable functions represent a formidable task if implemented
with analog mechanization. To be sure, these could be generated using an

available specially-configured digital computer at a frame rate sufficiently

high (e.g., ~ 500 hertz or above) to avoid degrading the hybrid simulation.

16



5.

-

But if a specially-configured digital computer is used for the function generation,

why not use it for the whole simulation, assuming the speed is adequate?
Thus the conventional hybrid approach appears quite unattractive to us.

There is one approach which might be considered. That alternative
is to do all the computation except the actual integration on a specially-
configured 16-bit digital computer with the integration performed on one
analog console. This avoids the problems which would otherﬁse arise on the
16-bit computer if it were used for the numerical integration as well. I.e.,
for the slow-varying state variables the incremental change in state from
one frame to the next is too small compared with the state variable itself
to permit reasonable sealing of the increment with a 16-bit computer. Having
more than 16 bits (say 32) representing the integrands solves this problem
but requires hardware development. Using analog integration is an immediate
way around the problem. For the RSRA with 6 rotor blades there are

6 + 12 = 18 degrees of freedom, or 36 integrators minimum.

17



5. TIME-SHARED HYBRID SIMULATION

5.1 Basic Concept

An alternative hybrid mechanization of the RSRA equations involves
the use of an analog circuit to compute the aerodynamic forces and moments
along each blade and, possibly, to solve the blade equations of motion. The
single analog circuit is then time shared amongst the N blades. This approach
has been the basis for hybrid mechanization of rotary-wing aircraft simulations
in the past using general-purpose analog/hybrid computers, and is the concept
used in at least one current special-purpose hybrid design for helicopter
simulation.

In this approach the aerodynamic forces on a given rotor blade are
computed continuously on the analog computer as a function of distance along
the blade, from hinge to tip. An analog integrator with fixed input provides
a high-speed sweep voltage representing distance along the blade. The
resulting aerodynamic force components at each point along the blade, as
voltage outputs of the analog circuit, are integrated with appropriate weighting
factors so that at the end of each sweep the total force and moment components
acting on the blade are represented by the final integrator outputs. The
integrators are then reset to zero and the sweep is repeated with the same
analog circuit representing the next blade, etc., until total force and moment
components for all N blades have been computed. The process is then repeated
cyclically, with the result that a descrete time-series of analog voltages

representing force and moment components for each blade is generated. These
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can then be used to solve the blade equations of motion, either with analog or
digital integration. The result is a considerable reduction in required
digital computer load for the overall simulation. By time-sharing a single
analog circuit over all blades a substantial saving in analog equipment is
achieved.

5.2 Equipment Requirements

First of all, let us assume that the time-shared analog scheme described
above is used only for computing overall blade force and moment components,
Then the saving in digital operations applies to all the operation counts in
Table 2.1 involving s, the blade segment number. Thus the velocity~-component
calculation along the blades in Eqs. (8.6)-(8.8), all the aerodynamic force
components in the equations of block 10, the blade moment computation in
block 11, and the force summations in Eqs. (13.6)-(13.8), in short, all the
equations in Table 2,1 where the equipment count is multiplied by Ns, are
included. Thus 32Ns multiplies, 18Ns adds, 2Ns trig functions, 3Ns two-
variable functions, and 3Ns square root digital operations per pass are saved
by the time-shared analog mechanization. Clearly the latter requires 22
analog multipliers (see the analog multiply/divide column in Table 2.1),

2 trig function generators, 3 two-variable function generators, and 3 square-root
generators (analog squarers in amplifier feedback loops). This is a reasonably
small complement of analog equipment, although the 2-variable analog function
generators might pose a problem. Actually, one of the three 2-variable

functions (the computation of o ) can be mechanized algebraically, so that

.TRANS
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only the 2-variable functions representing blade section lift and drag
coefficients need be implemented.

Assuming all this is done, reference to Table 3.1 shows that for N = 6
(6 blades) and s = 5 (5 blade segments in the equivalent digital mechanization)
there is still considerable digital computation remaining, namely, the operations
dependent on N and independent of N. These represent perhaps 40% of the
original digital load for doing all the equations, so that the digital task is still
formidable. Thus we have to perform more of the task on the analog, e.g.,
integration of the blade equations of motion (Eqs. (9.5), (9.6), (12.1), and
(12.2)), as well as a large number of coordinate conversions. In fact, if we
are to make a major impact on the digital operations count, say reduce it by
an order of magnitude, clearly most of the N dependent as well as all of the
Ns dependent operations in Table 2.1 must be performed on the time-shared
analog circuit. In addition to the components required above for the Ns
dependent equations (22 analog multipliers, etc.,) reference to the summary
at the end of Table 2.1 shows that up to 80 analog multipliers and 8 trig
function generators would be required. Although this is still much less
analog equipment than would be needed for the conventional hybrid mechanization
of Section 4, it would require a total of at least two analog consoles if general-
purpose equipment were utilized.

In the above time-shared hybrid mechanization the analog circuit
inputs, coming from DAC's (digital-to-analog converters), would be digitally-

generated components of shaft-axis velocity, angular velocity, acceleration,
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and angular acceleration. The analog circuit outputs, applied to A to D
channels interfaced to the digital computer, would be a discrete time series
of force and moment components along shaft axes due to each blade. After
the time-shared analog circuit completes a duty cycle for a given blade, the
force and moment contributions due to that blade are converted to digital
form through the interface. The analog computation then proceeds through
next blade duty cycle, etc.

5.3 Dynamic Considerations

From the previous section it is clear that the time-shared analog circuit
is required to solve the blade equations of motion, i. e., integrate Egs. (9.5),
(9.6), (12.1), and (12.2) in Appendix B. These integrations will proceed
continuously over each individual blade duty cycle, but many of the terms on
the right-hand side of the equations will be fixed over the duty cycle, e.g.,
the blade moments m ., and m , in Egs. (9.5) and (9. 6). Thus the

Px] pz)

mechanization for each degree of freedom (lagging and flapping) becomes in
principle a second-order loop with two continuous analog integrators but with
a sample-data feedback loop. The dynamics of such loops have been studied
extensively using z-transform theory3. In particular, the damping ratio and
frequency errors due to the finite frame time T of the feedback loop, plus the
additional delay of T needed to calculate the quantity fed back (aerodynamic
moment) turn out to be the following:

Damping ratio error = - 3 aT (5.1)

4
Fractional freq. error = - 0.864 (aT)%, a T << 1 (5.2)

3 Gilbert, op. cit.
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Here T is the duty-cycle time for each blade computation (time to sweep
from hinge to tip to calculate total blade moment components) and a is the
frequency of the two-integrator loop. We will assume that this frequency
turns out to be the order of the rotor spin frequency, i.e., 30 rad/sec.
Actually, the circuit should probably be mechanized with a separate
pair of integrators for each degree of freedom for each blade, i.e. 4N
integrators in all. Then the group of 4 integrators assigned to each blade
will integrate only for 1/N of the overall duty cycle, and will be on hold for
the remining time while the equations for the other N-1 blades are integrated.
In effect this means that each analog integrator must be programmed to
operate at N times real time, since it integrates over only 1/N of each total
duty cycle (duration N times the individual duty cycle period, T). Thus the
frequency a in Eqgs. (5.1) and (5.2) is effectively N times 30 or 30N rad/sec.
If a damping ratio error of 0. 01 is deemed an acceptable upper limit,
then Eq. (5.1) shows that aT = (4.3)(.01) = 0.0133. This corresponds to
75 frames per radian. For 6 blades (N = 6) a =z 30(6) = 180 radians, so that the
frame rate = 1/T = 75(180) = 13,500 frames per second. The corresponding
duty cycle period T = 75 x 10-6, or 75 microseconds. This is probably
unacceptedly short, since one would expect time-constants in the analog
computing elements (especially the function generators) to be the order of
one microsecond. Furthermore, mode control timing errors could be ~+ 1 micro-
second, The result would be dynamic errors in the analog circuit of perhaps

several percent.
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Fortunately, the sampled-data feedback delay in each two-integrator
loop is known (to first order it is 1.5T) so that rate compensation for this
delay can be implemented. The resulting errors in damping ratio and frequency
now depend on (aT)2 and acceptable dynamic accuracy (better than 0. 01 in
damping, one percent in frequency) can be obtained with aT = 0. 1. 3
For a = 30(6) = 180 rad/sec, this corresponds to 1800 frameé per second,
or T = 556 x 10_6 or 556 microseconds. This is a more reasonable duty cycle
and should minimize the effect of analog component dynamic errors.

To summarize, the time shared hybrid approach seems feasible for
solving the RSRA equations, but will require at least two analog consoles.

Naturally, it suffers from all the programming and reliability problems

associated with such a hybrid approach.

3Gi.lberi:, op. ct. 23



6. SUMMARY RECOMMENDATIONS

As a result of this study the following recommendations are made:

1. The real-time simulafion of the RSRA equations should be
implemented on a specially-configured digital computer using floating point
if the speed is sufficient. If fixed point computation is necessary, it is
recommended that equations similar to those in Appendix B of this report
be used.

2. It is recommended that NASA lead an effort to standardize the
notation and sign conventions used in rotary-wing aircraft math models, and
that this be as consistent as possible with conventional aircraft
notation.

3. It is recommended that NASA conduct an ongoing research program
in rotary-wing aircraft modeling for real-time simulation. This effort should
involve coordination of past and present efforts of the rotary-wing aircraft
manufacturers, implementation of 2. above, systematic consideration of
competing modeling approaches, determination of possible equation simplifications,
investigation of different integration algorithms, determination of required

integration frame rates, and correlation of results with flight tests.
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APPENDIX A
DEVELOPMENT OF HELICOPTER EQUATIONS OF MOTION

AND ROTOR MODEL

A,1 INTRODUCTION

In this appendix we develop from first principles the helicopter
equations of motion, including the rotor model. The purpose of this
development is to verify the equations furnished by ARC, 1 understand
certain simplifications made in those equations, and in some cases sug-
gest alternate mechanization which may be more suitable for computer
simulation. In Appendix B, the equations are rewritten in dimensionless
form in order to facilitate the simulation if hybrid or fixed-point digital-

computation is utilized.

A,1.0 NOTATION FOR VECTOR COMPONENTS

In our equations of motion we are working with components of
vectors along a set of mutually orthogonal right-handed axes. The vec-
tors represent velocities or accelerations of one axis system relative to
another, For convenience we will designate the various axis systems
with a single letter; thus the I-frame is an inertial reference system,
B-frame is a set of body axes, etc, The individual axes will be desig-

nated with a lower case subscript; thus xb, Yb’ z_are the %,y and z

b

body axes. A wvector velocity of one axis system relative to another

usually will be designated with a double subscript; for example, ﬁpq is

the angular velocity of the P-frame relative to the Q-frame. This vector

1Mackie, D. Brian, and Thomas S. Alderete, '"A Real-Time Dual Pro-
cessor Simulation of the Rotor System Research Aircraft, " NASA TN-
D-8328, January 1977.
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can, of course, be projected geometrically into a third reference frame,
say the R-frame. This third reference frame will be designated with
a lower case superscript, where necessary for clarity. For example,
= : . r r r
the x , vy, z_ components of Q  will be written P , Q , R,
r "r r Pq P Pq Pd
respectively,

We have used the convention that if the vector is relative to iner-
tial space, the I-frame, then the second subscript may be omitted,
Thus the R-frame components of épi’ the angular velocity of the P-

r r
frame relative to the I-frame, may be written P;, Q , R . If asingle

p p

subscript is used, it always is implied that the second subscript is 'i'l,
In many cases the vector is projected onto the axis system given
by the first subscript. When this is the case, the superscript may be
omitted. Thus P_ , Q , R__ are the P-frams components of Q , and
P4q Pqd P3 P4

Pb’ Qb, R, are body axis components of Qbi'

b

A,1.1 DEFINITION OF AXIS SYSTEMS USED

A.l.1.1 Inertial Axes, I-Frame

For this study it is assumed that the earth is flat and non-rotating
so that a frame translating with a constant velocity (i.e., the horizontal
wind velocity) with respect to the carth may be considered Newtonian,

We designate this atmospheric frame as the I-frame.

A,1.1.2 Body Axes, B-Frame

These are conventional vehicle body axes. Origin of the B-frame

is the vehicle center of mass. If there is a plane of symmetry (such as

26



most airplanes have) it is the X, %y plane. In straight and level flight
the positive xy axis points approximately forward, the positive Vi axis

points approximately to the pilot's right and the positive z_ axis points

b
approximately downward. The B-frame usually is defined by the vehicle

manufacturer.

A.1l.1.3 Hub Axes, H-Frame

Origin of the rotor-hub axes is displaced from the vehicle center

of mass by the vector ;H’ where
Ty S G vy Zy)

Hub axes are parallel to body axes, as shown in Figure 1.1,

A.1.1.4 Shaft Axes, S-Frame

Origin of the S-frame is the same as hub axes. The S-frame is

rotated from the hub frame through the fixed Euler angles i, and i,.

6 b

The Euler angles result from positive rotation of ie about the Yy axis

followed by i, about the resulting x axis.

¢

A.1.1,5 Rotating Shaft Axes, Rj-Frame
Origin of the Rj-frame for the jth blade is the same as the S-frame,
namely the hub. As can be seen in Figure 1.1, thex ., v ., z_.s, R,-
r "ry rj ]
frame axes are rotated with respect to the X0 Voo Zg S-frame axes
by the azimuthal angle n/Z-\Ifj about the z axis. Thus the zrj and z
axes are coincident. The angular velocity of the Rj frame with respect
to the S-frame is given by QS and is directed along the z (i.e., z_.)

Ty
axis. Clearly \irj = - Qs. There are separate Rj-frame axes for each
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of N rotor blades, i.e., j=1,2,...,N.

A.1.1.6 Blade Span Axes, Pj-Frame
Origin of the Pj-f.rame is at the blade-hinge point Pj shown in

Figure 1.1, The hinge-point Pj is located a distance e along Yrj from

1 1
. z
rj’

the hub. In Figure 1.1 there is indicated an axis system x ri* Zrj

y
which is just the Rj-frame axes, xrj’ Yrj’ zrj’ translated from the hub
to the hinge-point PJ.. The Pj-frame is rotated from the Rj -frame

through the blade lag-angle Bj (negative rotation about zi_j) and the blade
flapping-angle Bj (negative rotation about xpj). The ij axis of the Pj-

frame is along the spanwise direction of the blade. There are separate

Pj -frame axes for each of N rotor blades.

A.2. HELICOPTER EQUATIONS OF MOTION

A,2.0 SUMMARY

A block diagram of the overall equations of motion in vector form
is shown in Fig. 2.1. It will be used as a reference for the listing of the
scalar equations in the following sections. The latter are the basis for
establishing the computational requirements for simulation. The blocks
in Figure 2.1 are numbered in the lower left or lower right corner.
Block 1 represents the overall aircraft translational and rotational equa-
tions of motion as determined by summing forces and moments about
the aircraft, e.g., Blocks 2 through 5 represent the equations for the
accelerations and velocities of the rotor hub axes and rotating rotor

shaft axes. Blocks 6 and 7 represent equations for the velocity and
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Figure 2.1 Block Diagram of Helicopter Equations in Vector Form



acceleration of the rotor blade-span axes. Block 8 shows the equations
for the velocities of the individual blade segments, Block 9 represents
the blade equations of motion, with two degrees of freedom (lagging
and flapping) for each blade. Block 10 represents the equations for
generating aerodynamic forces on the blade, while block 11 shows the
equations for calculating the total external moment on the blade (except
gravity). Block 12 represents the equations for relative velocity of
blade span axes with respect to rotating shaft axes, which are used to
establish equations for 3 andfi’ , where 3 and Sare blade lag and flap
angles, respectively. Finally, blocks 13, 14, and 15 show the equa-
tions for computing the overall vehicle force and moment due to the

rotor forces.

A.2.1 TRANSLATIONAL AND ROTATIONAL AIRCRAFT EQUATIONS

The translational equations for the aircraft are based on the vece

tor equation
A -G = Fb/M (1.1)

Here Kbi is the translational acceleration of the aircraft body axes

(xb, Ve 2y centered at aircraft c.g. ) with respect to the inertial
reference frame which is the atmosphere through which the aircraft

flies. G is the gravity acceleration vector and Fb is the total of all
other external forces acting on the aircraft. M is the aircraft mass

(not including rotor blades). In scalar form, Eq.(l.1) becomes

AL -G, = Fbx/M (1.2)
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Aby-Gy = Fby/M (1. 3)

Abz - C'z = sz/M (1.%)

Thus the external force components, Fbx’ Fby’ and sz are used to

provide the three acceleration-less-gravity output components of block

1 in Figure 1.1. We note that

—_ d — ——— —
Api Voii T at Veile Y% X Vi (1. 5)

d
dt bi’i

Here vbi is the body axis translational velocity vector with respect to
the inertial reference frame and ;ibi is the body axis angular velocity

d —_
vector with respect to the same frame. -d—t-Vbi),1 is the time-rate-of-

-'dt—v ), is the

change of v i as viewed from the inertial (I) frame, and bilb

b d

time-rate-of-change of Vbi as viewed by an observer in the body axis

(B)-frame. Thus

Vei T Uplp TV dp T Wk (1.6)

where 1 , and Eb are the unit vectors, respectively, along the xb,

b’ b

V' 2y body axes, Hence U_, V , Wb are the components of aircraft

b* b

velocity vbi along the three body axes, respectively. Also

i = Pb-ib+Qb3b+R‘bEb (1.7)

where P, Qb, R, are, respectively, the components of aircraft angular

b b

velocity along the three body axes. Thus Pb represents conventional

aircraft roll rate, Qb the pitch rate, and Rb the yaw rate.

From Eq. (1.6) we obtain

av,, L ,
- n - + bl
Gt b T Uplp TV PV Ky (1.8)

32



since it follows that for an observer in the body-axis frams, the body

axis unit vectors i, ib’ l-c_b do not change. We also note that the

gravity accelerations in Eqs. {1.2) through (1.4%) are given by

Gx =-- g, sin Gb (1.9)
GY = g, cos Gb sin ¢b (1.10)
Gz = g, cos Bb cos ¢b (1.11)

where Gb and d>b are the conventional aircraft pitch and bank angle,
respectively, and where g, is the sea level gravity acceleration.

Substituting Eqs. (1.6), (1.7) and (1.8) into (1.5), and the scalar com-
ponents of (1.5) into (1.2) through (1.4), we obtain the following three

equations using {1.9) through (1.11):

U, = - W, Q + VbR_b - g sin eb + Fbx/M (1.12)
V. = - + i +

vy U,R, * W P +g_ cos 6 sin ¢, Fby/M (1.13)
W, =-V, P +U,Q +g cos eb cos ¢ + sz/M (1.1k)

These translational equations of motion are integrated to obtain the body-

axis velocity components U,, V, , and Wb.

b b
The rotational equations of motion are obtained from the following

equation:

dﬁb _
dt )i = Mb (1.15)

where K/Ib is the external moment acting on the aircraft c.g. and ﬁb is

the angular momentum of the aircraft about the c.g. ITIb is in turn

given by
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[1]5bi (1.16)

Here [I] is the inertia matrix for the aircraft, not including the inertia
of the rotor blades. This is because the angular momentum associated
with the blades is considered separately in the blade equations of motion,
and the resulting blade reaction moments on the hub are part of the total
external moment E"b acting on the aircraft. Also in Eq. (1.16) we have
not included the angular momentum of the turbine power-plant assembly,
although this can easily be done.

I we neglect products of inertia in the inertia matrix (1], then Eq.

(1.16) can be written as

G+ K
bb Izszkb (1.17)

where I, I and I  are the aircraft moments of inertia about the body
xx’ yy z2Z

H = 3+
Hb Ixprlb Iny

z, , respzactively and i

axes, X, Vi, Zp and l—(b are the unit vectors

b’ b
along the respective body axes. Differentiating Eq. (l.16) with respect

to time we have

d — J—
EHb)i = [1] ——szb )b Q x [1] Q (1.18)

n Eq. (1.18), 739

)

b * i.e,, the time rate of change of body-axis angu-

ar velocity as viewed by an observer in the body axes, is given by

d — s - .- . _
at s T Fplp TR0, TRy K (1.19)

ince we have neglected the products of inertia,

Q = 3 + : + i
L1] Qbi Ixx Pb b Iyy' Qb Iy Izz. R'b l(b (1.20)
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and hence

=1 Ezbi

i

- < + _ ~
i e N

+ (Iyy-Ixx)Pbekb {1.21)

Substituting Eqs. (1.19) and (1. 21) into Eq., (1.18), and (1.18)
into (1.15), we obtain the following thress scalar equations of motion

of the aircraft:

hd IZZ-I be
= - -+
P, _———Y-L'I QR+ (1.22)
XX XX
I -1
Qb = -i‘f—ﬂp\bpb+l;ibl (1.23)
vy vy
I -Ixx sz
= oY XX + —= .
Ry, I Polp * T (1.24)
ZzZ ZZ

In Eqs. (1.22) through (1.2%4) be, Mby’ and sz represent the exter-
nal moments acting along the respective body axes.

In case the products of inertia are not negligible, it is straight-
forward to add the requisite terms to Eqgs. (1.22) through (1.2%). These
equations are integrated to obtain the body-axis angular velocity com-
ponents, Pb’ Qb, R_b, which in turn are used to compute the time-rates-
of-change of the body axis Euler angles \Iib (heading), Bb (pitch) and q>b

(bank angle). Thus we have the familiar formulas

\i’b = (Rb cos ¢b +Q, sin cbb)/cos Gb (1.25)
éb = Q_ cos ¢ - R, sin¢, (1.26)
¢b = Pb + \Ifb sin Gb (1.27)
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These are integrated in turn to compute the Euler angles \ED, Gb, and
by -

If our simulation requires computation of the aircraft position,
it is necessary to calculate aircraft velocity components along earth
axes, e.g., north, east, and vertical. Denoting Vii as the aircraft

velocity vector expressed in components along the earth (e) axes and

P =V

bi as the aircraft velocity vector expressed in components along

bi
the body axes, we write

—b
]Vbi (1.28)

e
Vbi = [T

be
where [Tbe] is the matrix used to transform body-axis components of a

vector to earth-axis components, It is straightforward to show that

[T, 1 =

be

; _ . i . . . " :
cosGbcosIzb cos¢bsm\ll smcbbsmebcos‘IIb s1n¢bsm\Ilb cos¢bs1n9bc05\Ifb

b
. X . . ai " . .
cos 9bs1n‘1fb cos¢bcos\2b+sm¢bsmObsm\Ilb smcbbcos‘l'!b cos ¢bsm9bsm\2b
-sineb smcbbcoseb cosebc05¢b |
(1.29)

Letting .Sx’ .Sy’ and :Sz (i.e., -h) represent the velocity components

north, east, and downward (h is altitude), we have from Eqs. (1.28)

and (1.29)
éx = chos GbCOS\Ifb + Vb(-cosq)bsin\lfb + sin¢bsin9bc05\2b)
+ Wb(sinq>bsin\1fb + cos¢bsin0bCOS\Eb) (1.30)
éy = chosebsin\I/b + Vb(cosdeCOS\Irb + sincpbsinebsin\lrb)
+ Wb(- s'm¢bcos\llb + cos¢bsin9bsin\llb) (1.31)
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S =-ﬁ=-Usin9b+V

2 b b s1n¢bcos Gb + Wbcosebcos¢b (1.32)

We note in passing that the inverse of the matrix [Tbe] is its transpose.

Thus
—=b —e
Vbi - [Teb]vbi (1.33)
where
T
[t ] = [T, ] (1.34)

and [Tbe] is given in Eq. (1.29).

In this section we have assumead as an inertial reference frame
the attmosphere through which the aircraft is moving. If there are
steady wind components they are easily added to Eqs. (1.30) through
(1.32) to take care of wind drift.

In summary, we have in this section indicated the derivation of
the six-degree- of - freedom equations of motion of the rigid aircraft.
Three of the state variables are the translational velocity components

u V, and Wb along the body axes, Equations (1.12), (1.13) and (1.14)

b’ b

are integrated to obtain these variables. Three more state variables
are the rotational velocity components Pb, Qb, R_b along the body axes.
Equations (1.22), (1.23) arnd (1.24) are integrated to obtain these
variables. The Euler angles \Eb, Bb, d)b constitute another three state
variables, and Eqs. (1.25), (1.26) and (1. 27) are integrated to compute
them. Finally, distance north (Sx), distance east (Sy) and altitutde

(h = -SZ) are the remaining state variables. Equations (l.32), (1.33)
and (l.34) are integrated to compute them.

Although the equations derived in this section are well known and

widely used, it was felt worthwhile to include the derivation because the
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methodology carries through to the subsequent derivation of rotor blade -

equations of motion.

A,2.2 ROTATING SHAFT AXIS ANGULAR VELOCITY

Although the rotor hub is located at a position remote from the air-

craft c.g., reference to Figure 1.1 shows that thz hub axes X Ve Zy

are aligned with the body axes x Thus the angular velocity

b b’ %p*

of the two axis systems is identical, and hence we write

i = By @1
Next we determine formulas for the components of ﬁhi along the shaft

axes X_, Y, Z_. From Figure 1.1 we see that the shaft axes differ from

the hub axes by the pitch angle i, and roll angle i Denoting the trans-

9 b

formation matrix from hub to shaft axes as [T, ], we have

hs

-3 -h
Qi = [ Thelly (2.2)
where éshi indicates that S-zhi is expressed in terms of shaft-axis com-

=h
ponents and Q

hi indicates that S-Zhi is expressed in terms of hub-axis

components.
The matrix [Ths] is obtained easily by analogy with conventional

Euler angles, for which we have already written the matrix [Tbe] in

Eq. (1.29) for the transformation of vector components from body to
earth axes. In Eq. (2.2) [Ths] is equivalent to a matrix for transform-
ing vector components from earth to body axes where Gb = '19,

¢b=1, and & = 0. Thusweset9b=10, ¢b:i¢, and\lfb=01n

¢ b

T
[Teb] = [Tbe] to obtain [T ] Making these substitutions in the trans-

hs
pose of [Tbe] in Eq. (1.29), we obtain
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cos i 0 -sini

0 (7]
[Ths] = siniq)sinie cos i¢ siniq)cos ig (2.3)
cos i¢sini9 - Sinicb cos iq)cos ie

Since iO and i, are fixed angles, the angular velocity of the shaft axes

$

X_» Vs 2z 18 equal to the angular velocity of the hub axes Xpo Y0 Zye

Hence, we can write

G = By @4

Thus, Eqgs. {(2.2) and (2.3) can be used to compute the components of
shaft-axis angular rate along the shaft axes.

Reference to Figure 1.1 shows that the rotating shaft axes xrj’
Yrj’ zrj for the jﬁh rotor blade differ from the shaft axes X Vo Zg

by the azimuthal angle 7r/2-\Ilj in the x_, Yg OF Xi ¥, plane, where

rj

T, = -Q 2.5)
] 5

Note that \I/J and hence the rotating shaft axes are different for each of
the N blades (j=1,2,...,N). To obtain the angular velocity S-zri of the

rotating shaft axes for each blade, we note that

Q. =0 .+ k (2.6)
Ir1 S1 S S

where ES is the unit vector along the z_ axis and QS is assumed to be the
velocity of the rotating shaft axes with respect to the shaft axes (see
block 2 in Fig. 2.1). Note that the angular velocity of the rotating shaft
axes is the same for all blades. This is why we denote the angular ve-
locity as fzri (angular velocity of Rj-frame with respect to the inertial

frame) without an added subscript j for the jth blade.
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Using Egs. (2.2), (2.3), (2.4) and (2.6), we obtain the following
three scalar equations for the components Pi, Qi, and Ri of rotating

shaft axis angular velocity along shaft axes:

s

Pr = Pb cos 16 -Rb sin i (2.7)
s

- .. i 4 - .. .
Qr Pb sin 1¢ sin 19 Qb cos 1¢ Rb sin 1¢ cos 19 (2. 8)
S

- . T i+ . -
Rr Pb cos 1¢ sin i Qb sin 1¢ Rb cos 1¢ cos iy Qs (2.9)

Note that Pi, Qi, and Ri are the same for each blade. For this reason

we don't add the subscript j for the jth blade.

Next we determine the components of ﬁri along the rotating shaft
axes X , Y., Z_. Again, reference to Figure 1.1 shows that the rotating
shaft axes x_., y_., z_. for the jth blade differ from the shaft axes x ,

rj’ 'rj® “rj s
y,» Zg by the equivalent Euler angles 6, =0, ¢, =0, ¥ = /2 - \I{]
- s . - T . .
Making these substitutions into [Teb] = [Tbe] , where [Tbe] is given
in Equation (1.29), and noting that cos(7/2 - \Ifj) = sin \Ifj,

sin (7/2 - \Ifj) = cos \I/j, we obtain the following transformation matrix:

sin¥ cos ¥ O
) J

[T ] = -cos ¥ sin® O (2.10)
ST, j i
j
0 0 1
Thus
8t = [T 18° (2.11
rij B srj ri -11)
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and from (2.10) and {2.11) we have

Pr = P° sin o + Qs cos ¥, (2.12)
rj r j r j

Q. = -P° cos ¥ +Q° sin ¥, (2.13)
rj r j T b

RS, = R® 2.14)
rj r

as the components of rotating shaft axis angular velocity along the Rj~
frame axes for the jth blade. Since there is a rotating shaft axis sys-
tem for each blade, Eqs. (2.12) through (2. 14) are repeated N times
for N blades, each blade having a different ‘I’j (j=1,2,...,N).

Note that the N blades will be equally spaced in azimuth with a
separation of 27/N between each blade. Thus if \Ir1 is the azimuthal
angle for the first blade, then the angle \IIJ for the j’:h blade is given by

\Ifj = \If1 +2n(G3-1)/N, j=1,2,...,N (2.15)

It follows that

sin ‘I’J = Sin[‘l‘l + 2—']—‘7’1(\;-1)] = sin ¥ cos[——J—Zﬂlg-l)] + cos sin[—‘J——Zﬂl(\;-l)]

1
{2.16)
and
cos \IfJ = COS[\If1 + _2_7r_(§1-_1)] = cos ¥ cos[gll(;]i-—l)] - sin ¥, sin [———J—--Zﬂlg'l)]

(2.17)
Thus once sin \Ill and cos \Ifl are computed for the first blade, sin \IfJ
t
and cos \IfJ for the j h blade can be computed using Eqs. (2.16) and

(2.17). Each equation only requires two multiplies and an add, which

may save considerable time over computing sin \Ifj and cos \IlJ directly.
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Finally, we develop the equations for obtaining the components of

rotating shaft axis angular velocity along the blade span axes for the jth

blade. In Figure 1.1 we see that the blade span axes, xpj’ ij' zpj are

displaced from the rotating shaft axes xrj’ yrj' and zrj by the yaw angle
Sj (called the blade lag angle) and the roll angle Bj (called the blade flap
angle). Again, using the Euler angle analogy, Gb =0, cbb = - Bj’ and

T = = Sj- Making these substitutiéns into ['I'e ] = [T ]T, where [Tbn]

b

is given in Eq. (1.29), we obtain the following formula for the transfor-

b ba

th
mation matrix from rotating shaft axes to the j  blade span axes:

r-cos 5. - sin §, 0
] J
[T ] = sin §, cos B, cos §, cos p, - sin @, 2.18)
er 6) BJ ) BJ BJ (
sin §, sin g, cos §. sin g, cos R,
_ ] BJ J r3J BJ_
since
=P _ -1
Qri. - [Trp,]Qri. (2.19)
] J
we have
P r r .
P'., = P, cos 5. - Q . sin 5, (2.20)
r) r) 5J r) 6J
P r r r .
Q. = P _sing.cosg, +Q .cos g, cosp, - R . sin§
rj I) 8J BJ r) 6J BJ r) BJ
(2.21)
P r . ) r . r
RY, = P  sing. sinp.+Q ,cos 5, sinpg, +R , cos g, (2.22)
T} r) 8J BJ r) J BJ r) BJ

Actually, it turns out that ng in Eq. (2.21) is not needed in the mechan-

ization.

Thus block 2 in Figure 2.1, which involves the computation of

rotating shaft angular velocity components, requires the use of Egs.
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(2.7), (2.8) and (2.9); Egs. (2.12), (2.13) and (2. 14) times N for N

blades; and Eqs. (2.20) and (2. 22) times N for N blades.

A.2.3 ROTATING SHAFT AXIS ANGULAR ACCELERATION

Next we consider the equations for 5ri' the angular acceleration
of the rotating shaft axes X V.o Zoe Consider first :ési’ the angular
acceleration of the shaft axes X Vg Zge Since the alignment of these
axes is fixed with respect to the body axes (the angles ie and i, are con-

b

stant in Figure 1.1), clearly

i T Shy G.1)
where 5bi is the angular acceleration of the body axes. In section A,2.1
we noted from Eq. (1.7) that the body-axis angular velocity, S_Zb.l, is by

definition given by

o = t o4
Gy T Pplp TQQIpTRy (3.2)
Differentiating Ebi’ we have

d = d 5 —= = d —
—_— = —Q + = -
at il at pilb T i X Dy at Bilb (3.3)
since szbi b'd Qbi = 0. Equation (3.3) shows that the time-rage-of-change
of ?Zbi as viewed from the inertial frame is the same as the time rate of
change as viewed by an observer in the body axis frame. But from Eq.

(3. 2) this is simply

.

B T Pl TR, TRy Ky (3.4)

where Ebi is the time rate of change of -S—Zbi as viewed from the inertial
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frame. Thus the body axis components of the abi output from block 1
in Figure 2.1 are simply I-Db' Qb’ and ].i_b, respectively, as given in-
Egs. (1.22), (1.23) and (1.24).

The shaft axis components of 551 can be obtained from body axis
components by using the transformation matrix [Ths] = [Tbs] as given
in Eq. (2.3). Thus

g *h

SZ51 [Ths]gsi (3.3)
and since from Eq. (3.1), Qsi = Qbi' we have

'S : . . .
PS = Pb cos iy - Rb sin ig (3. 6)
] . . .

- .. sy - .. .
Qs Pb sin 1¢ sin 19 Qb cos 1¢ Rb sin 1¢ cos 16 3.7)
.S . . .

- . s L s . .
RS Pb cos 14’ sin ig Qb sin 1¢ Rb cos 1¢ cos ig (3.8)

as the formulas for shaft-axis angular acceleration components along
shaft axes., Next we compute the components of §si along the rotating

shaft axes of the jth blade using the formula

3:. - [t 19 (3.9)

where [Tsr ] is given in Eq. (2.10), Section A.2.2. Thus

J
PY = P’ sinw + f)s cos T, (3.10)
sj s j s j
5 = _DP® cos ¥ + O°sin ¥ (3.11)
sj s ] s ]
RY. = R® (3.12)
s]j s

We have already seen in Eq. (2.6) of Section A. 2. 2 that 51"1’ the angular

velocity of the rotating shaft axes, is given by
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Qi
n
9l
+
o)
o

(3.13)

ri si 3 s

Differentiating Eri. we obtain

S d = d = — - d —
= = = — + - <
Q. = %) T m ) T X0 = T %), (3.14)
since @ x Q. = 0. Thus from (3.13) and (3.14)
= _ _<1_(§ +Q K) (3.15)
ri = dt si s r'r .

where l-cr = Es' Even though there are N rotating shaft axes (one for each
of N blades) until now we have not designated either ﬁri or S._zri with an
additional subscript j for the jth blade because each rotating blade-axis
differs from the other rotating blade axes by a fixed azimuthal angle.
Hence ari and 5.1_1 are the same for all blades. But as soon as we write
the formulas for the components of Sri along the rotating shaft axes for
the jth blade, we must use the additional subscript j. Thus in Eq. (3.15)
for the i blade

et = Prji +Qr.j'r+Rr.E (3.16)

and from Egs. (3.10) through (3.16) we have

P', = PPsinw +Q° cos ¥ (3.17)
T s i s j

O = -P°cos ¥ +Q° sin ¥ (3.18)
rj s i s j

RY, = R°+¢q (3.19)
Tj s 3

To summarize, the components of rotating shaft axis angular accelera-
tion along rotating shaft axes for the jth blade are first obtained from
Egs. (3.6), (3.7), and (3. 8) followed by Eqgqs. (3.17), (3.18) and (3.19).

Actually, Q;J in Eq. (3.18) is not needed. Equations (3.17), (3.18)
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and (3.19) must be repeated N times for the N blades.

A.2.4 HUB AXIS VELOCITY

The computation of hub-axis velocity, \—/’hi, is indicated in block 4

of Figure 2.1. Itis given by the formula

V,, =V, .+V

Vhi bi hb (4. 1)

where Vbi is the velocity of the body axes (i.e., the aircraft c.,g.) and

vhb is the velocity of the hub with respect to the aircraft c. g. (body-

axis origin). Vhb is given by

Vhb = Qbi X Ty (4. 2)

where Ebi is the body-axis angular velocity and r_. is the position of the

H

hub with respect to the aircraft c.g. From Figure 1.1 we see that

- _ s - -
T *mp TVnly T2k (4.3)
where i-b' j-b’ and Eb are the respective unit vectors along the body

. — - < + - -
axes, Noting that ﬂbi Pb iy Qb iy + R_b kb we have from Eqgs. (4.2)
and (4. 3) the following formulas for the body~-axis (and hence hub-axis)

components of Vhb

b
th = Qb zH-Rb YH (4. 4)
ve o P z (4. 5)

nb - Sb *m ~ b %m .
w2 = p Q (4.6)
hb = "b7H " “p*H .

To get the components of vhi along shaft axes X, Yo B, We need

to use the transformation matrix [Ths] given in Eq. (2.3). Thus
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=S =h —b —b
Vi = [TpedVyy = [TpJ00, + Vi) (4.7)
Finally, we note that
Ve © Vi (4. 8)

i.e., the translational velocity of the rotating shaft axes is the same as
the hub axes, since they have a common origin. From Egs. (2.3), (4.7)

and (4. 8), we obtain

s b b
= + i - + i 1
Ur (Ub th)cos ig (Wb th)sm ig (4.9)
s b b
- + .. .. .
Vr (Ub th)sm 1¢ sin ig + (Vb + Vhb) cos 1¢
+ (W, + W2 )sin i i (4.10)
b hp) Sin 14) cos ig .
s b b
_ + . . " ..
Wr (Ub th) cos 1¢ sin i (Vb vhb) sin 1¢
b . .
+ (Wb + th)cos 1(1> cos iy (4.11)

Eqgs. (4.4), (4.5) and (4.6), along with Eqgs. (4.9), (4.10), and (4.11),
are used to compute the velocity outputs of block 4 in Figure 2.1. As

before, we note that ie and i, in Eqgs. (4.9), (4.10) and (4. 11) are con-

¢

stants, so that the coefficients in the equations can be precomputed as

fixed parameters.

A.2.5 HUB AXIS ACCELERATION

The computation of hub-axis acceleration, A, ., is indicated in

hi
block 5 in Figure 2.1. It is given by the formula

d —
A T at Vniki (5. 1)
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Bit from Eq. (4.1) V.. =V . +V

hi bi hb* Substituting (4.1} into (5.1), and.

d — _ —
Vbi = Abi’ we have

noting that at

or

— — d — — —
= 4= +
A T 2nita Vens T % * Vi (5.2)

But from Eq. (4.2), Vhb = Qbi X Toy and since r__is fixed in the body-

H

axis framese,

d = - - d - - :
at Vhbe T atthi X T T @t ilp ¥ Ty T Gy xXTy (5-3)
where
L _day _da - _d g
Qi T @i T @i T % T @ik

Substituting Eq. (5.3) into (5. 2) and subtracting the gravity acceleration

vector G, we obtain

=~ & = 2 = L5 _—

Ahi G Abi G + Qbi b4 rH Qbi x Vhb (5. 4)
which is just the equation shown in block 5 of Figure 2.1. Writing Eq.
(5. 4) as three scalar equations, we obtain

b b . .
- = - W - + -
A Gx Abx Gx + Qb hb Rb Vhb Qb Ziy R

hz b Vg (5:3)

b b, . :
- = -G + - + R - 5.6
Ay~ Gy T Ay T O TR Uy - By Wiy TRy Py - Pz (5.6
b b

- = - + - : -
Apz ~ Gy Ay = Gy TP, Vi - Q, Uy T Py vy

Q (5.7)

b “H
As before we can transform these body-axis (and hence hub-axis)
components of Khi - G to shaft-axis components using the transforma-

tion matrix [Ths] in Eq. (2.3). Thus
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=S =8 —h =h
(A, -G) = [Ths](Ahi -G) (5. 8)

We also note that the hub axes o Yy 2y in Figure 1,1 have a common

origin with the rotating shaft axes X o> Yoo Zoe Hence

Ari-G =Ahi-G (5.9)

From Egs. (2.3), (5.8), and (5.9), we can write the following three

scalar equations:

Arx - Gx = (A.hx - Gx)cos ie - (Ahz - Gz)sin i6 (5.10)
A‘:Y -Gy o= (A, -G siniysinig ¥ (A -G )cosi,

+ (Ahz - Gz)sin id) cos '10 (5.11)
Aiz -GS = (A -G )cos i, sinig - (A -G )sini,

+ (Ahz - Gz)cos i¢ cos '19 (5.12)

As before, the coefficients can be precomputed as fixed parameters
since i¢ and i6 are constants.
Equations (5. 5) through (5.7) and (5. 10) through (5.12) are used to

compute the hub-axis and hence rotating-shaft-axis acceleration com-~-

ponents along the shaft axes.

A.2.6 BLADE SPAN AXIS VELOCITY

In Section A.2.4 we determined the formulas for calculating the
rotating -shaft-axis velocity components Ui, Vi, and Wi along the shaft
axes. To obtain the components along the rotating shaft axes for the jth
blade we use the formula

vioo= [T IV (6.1)

ri,. sr,” Ti
J J
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where the transformation matrix [Tsr ] is given in Eq. (2.10). Thus

J
from Egs. (2.10) and (6. 1) we obtain

Y = U%sinw +V° cos ¥ (6. 2)
rj r j . r j

vi, = -U® cos & +V° sin ¥ (6. 3)
rj r i r j

who o= w® (6. 4)
rj r

We next determine the formula for the translational velocity, Vpi , of
j
the jth blade hinge point Pj in Figure 1.1. This is given by

?ri =~\—rri +Vr (6.5)
Pl i P

where —{rpr is the velocity of the hinge point Pj relative to the hub (i.e.,

the origin of the rotating shaft axes). Thus

v = Q .xe, (6.6)
pr; ri j

Here ﬁri is the angular velocity of the rotating shaft axes (we recall that
s’zri is the same for all blades, i.e., is independent of j) and éj is the

position of the hinge point Pj with respect to the hub. Thus
e. = ej . 6.7)

where irj is the unit vector along the y | axis in Figure 1.1. Noting that
rj
= P'i +QT]  +RTEK . andV_ = UL{ 4V ] . +W_Ek .,
ri rj rj rj'rj rj rj ri, rj rj rjrj rj rj
we have from Eqs. (6.5), (6.6) and (6.7)

T T r

ut. = Ut -RrRTe 6. 8)
pj rj ~ rj

ve o= v, (6. 9)
pj rj

wi. o= Wi+ P e (6.10)
pj rj = rj
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Thus Egs. (6.2) through (6. 4) together with Eqs. (6. 8) through (6.10)
are used to compute the rotating shaft axis components of the hinge ve-
locity for the jth blade. All equations must be solved N times for N

blades and provide the output of block 6 in Figure 2. 1.

A.2,7 BLADE-SPAN AXIS ACCELERATION

The blade span axis acceleration A i is the acceleration of the
j
hinge point Pj for the jth blade with respect to the inertial reference

(I-frame). It is computed using the same approach as in Section A.2.5

for the hub acceleration. Thus by direct analogy with Eq. (5.4)

A. -G =A . -G+Q . xe. +02 . xQ . xeo, (7. 1)
pi. ri ri j ri ri j

Here Kri = Khi {the rotating-shaft axes and hub axes have a common
origin), §ri is the angular velocity of the rotating shaft axes, and éj is

the position of hinge-point Pj with respect to the hub. Q.xe, =V

ri j phj

= vpr , the velocity of hinge~-point Pj with respect to the hub.

j

Let us write Eq. (7.1) interms of scalar components along the
rotating shaft axes, er’ Yrj’ zrj for the jth blade. To do this we first

need to write the formulas for R-frame components of Kri - G in terms

of S-frams= components using the transformation matrix [Tsr ] given in

j
Eq. (2.10). Thus
AT -G = (A° -G%)sinw +(A° -G%)cos @ (7.2)
rXj xj rx x j ry v j
r r S s s s
ryvi -G . = - (A -Gl)cos T, + (A - G )sin ¥, 7.3
YE= My rx | x B j (7.3)
AT -ag", = A° -G° (7. 4)
rZj zj rx z
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] 5, s s s s . . 0
- , (A" -G ), and (A - G ) are given in Eqs. (5.10)
where (A_ -G ) (A -G A, -G, g :
(5.11) and (5. 12).

The R-frame components of Eri are given in Egs. (3.17), (3.18)
and (3.19); éj is given in Eq. (6.7); the R-frame components of Qri
are given in Eqs. (2.12), (2.13) and (2.14). These equations provide
all the R-frame components necessary to express Eq. (7.1) as three
scalar equations along the respective rotating shaft axes xrj’ Yrj’ er'

Thus we obtain

AT -GE = AT -G+ @5 P, -RI)e (7.5)
PX] X} rx] %) ry rj) r)
T r r r r 2 r 2 7.6
AT -G, = A -G . -[R)+(®_.)]e (7.6)
PYj A Tyj b r) r)
r T r r r r - T
- = A -G .+ (Q .R . +Pe (7.7)
Apzj sz rzj z]j rj rj r

Equations (7.2) through (7. 7) must of course be repesated N

times for each of N blades (j=1,2,...,NJ,

A.2.8 BLADE SEGMENT VELOCITY

In order to compute the aerodynamic forces acting on each of
the blade segments, it is necessary to compute the velocity vector
= th .th
ij at the center of pressure of the k~ segment of the j  blade.

This is simply given by the vector formula
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=V .+ 5.
Vik Vpij S_Zpij * Pk

(8.1)

where V i is the velocity of the blade hinge at point Pj in Figure 1.1,
pi.

- J t -

Qpi is the angular velocity of the j h blade-span axes, and 'pjk

is the
position of the kth segment center of pressure with respect to the hinge
point Pj. Thus
. = i 8.
P = Yaud pj (8.2)
where Vol is the distance from Pj to the segment center of pressure and

'j j is the unit vector along the ij blade span axis in Figure 1.1. We

denote the blade-span-axis angular velocity Epij for the jth blade by

. =P +Qj  +R k.
Py PJ PJ PJJPJ PJ PJ (8. 3)

The components of blade-span-axis velocity W_fpi have already been given
in Eqs. (6.8), (6.9) and (6.10). To resolve them into components along
the blade span axes xpj’ ij’ zpj requires the transformation matrix

[Trp] given in Eq. (2.18). Thus
j

vPoo= [T VI, (8. 4)
pi, rp,” pi,
or from Eq. (2.18)
Ugj = U;j cos B, - v;j sin 5, (8. 5)
ng = U;j sin Bj cos Bj + V;j cos Sj cos E'j - W;j sin Bj (8.6)
ng = U;j sin Bj sin Bj + V;j cos SJ' sin BJ. + W;j cos BJ. (8.7)

Substituting Eqs. (8.2) and (8. 3) into Eq. (8.1), we obtain the following
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three scalar equations for UTj K’ URj K’ and UPEjk the tangential,
- t —
radial, and perpendicular components of the k h segment velocity, ij,

t
along the respective j h blade span axes:

P
U = US, -R_, 8.8

Tik Pj pj T2k (8.8)

P

U, = VP, 8.9

Pk PJ ( )
U, = We.+P .y (8.10)
Pk Pj pj * 2k

Equations (8. 5) through (8.10) are mechanized in block 8 in Figure 2. 1.
Equations (8.8), (8.9) and (8.10) must be repeated Ns times for N

blades (j=1,2,...,N) and s segments per blade (k=1,2,...,s).

A,2.9 ROTATIONAL EQUATIONS OF MOTION FOR THE BLADE

The rotational equations of motion of the blade are obtained by
summing moments acting on the blade about the hinge point Pj in Figure
1.1. I we let Epi_ be the j‘Eh blade angular momentum (with respect to
the inertial frame) about the point PJ., l\—/IBJ_ be the total external moment
about ].:; acting on the blade, and Kpi. be the acceleration (with respect to
the inertial frame) of the point Pj, tf'len we can write2

d —_— — — —
= .= - A .
dt Hpij)l MBj pcj xm p1j ©.1)

Here ;cj is the position of the blade c.g. with respect to the hinge point

Pj and m is the blade mass. Thus - ch xm A i is the additional iner-
— ]
tial moment due to the acceleration A : of the point P_,
j J
2Greenwood, D. T., "Principles of Dynamics, '" Prentice-Hall, Inc.,
1965, p. 146,
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Now H . = [1.]& ., where [I.] is the blade inertia. matrix and
pi, B pi, B

Qpi is the angular velocity of the jth blade. We will assume that
j _ -

Ib = 0 0 0 (9.2)

i.e., the blade has equal moments of inertia, I.b, along the xpj and zpj
blade-span axes, and negligible inertia along the blade-span direction,

the ij axis., From Eq. (9.2), then

Hpij = b Fpites T e Rpi s ©-3)
where ij and RPj are the blade-span-axis (and hence blade) angular
velocity components along xpj and zpj’ respectively. Note that ij,
the blade-span-axis angular -velocity component ij’ is not equal to the
blade angular velocity component along that axis, since in general the
blade can be twisted (pitched) with respect to the blade-span-axes,

But since the blade inertia about the ypj axis is neglected, we don't

need to consider the ypj angular velocity component in representing the

blade angular momentum ﬁpi .

j
Next we note that
d = d = - =
— B +
dt Hpi )1 dt I_Ipi.)p Qpi. x Hpi (9. 4)
J J J
where
Q. =P .i.+Q . j . +R_ k. (9. 5)
Plj P) PJ P PJ Pl P)
: d = . .
From Eq. (9.3) we see that at H‘pij)p is simply
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d — L] - * -
——H = P.i.+L R .k, 9.6
dt J o Pi pj 5 Pi Pj 9. 6)

Substituting Eqs. (9.3), (9.5) and (9. 6) into ((. 4), we obtain

4 - -
—-—H.) = (P .+ k 9.7
dt Plj)l 5 Pj QPJ PJ "pj Lb( Pi pJ PJ) Pj ©.7

Next we let lT/ij represent the external moment exclusive of grav-

t
ity acting on the j h blade, e.g.,

M . = M + . . 3)
MBJ_ ij cj x m-G (9.8)

Substituting Eq. (9. 8) into Eg. (9.1), we obtain

d —_ _ —_—
i leJ)1 = ij - ch x rn(Apij - G). (9.9)

But we have already developed in Section A, 2.7 the equations for

(A . - G), except that in Eqs. (7.5), (7.6) and (7.7) the components

i,
pJ

are along the rotating shaft axes. To convert them to components along

the blade-span axes the transformation matrix [Trp ] in Eq. (2.18) is

used. Thus :
AP P = (AT . -Gl )cos 5. - (AT . - G.)sin g, (9.10)
PX] ) PX] X] J PYyJ y) J
Agyj - GI;j = (A;xj - G;j)sin 8]' cos Bj + (A;yj - G;j)cos aj cos Bj
- (A;zj - G:j)sin 3 (9.11)
Agzj - sz = (A;Xj - G:;J.)sin Sj sin Bj + (A;Yj - G;j)cos Gj sin ﬁj
+ (A;zj - G:j)cos B, (9.12)

Substituting Eq. (9.7) into (9.9), writing the result as two scalar
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equations (note that $cj = pcjpj)' and solving for 1.3pj and i{pj’ we

obtain
1 P 13
P.=-Q.R.+=—M .-p m(A .-G . 9.13
PJ pi Pi L~ Pk P ™ Bps ZJ)] ( )
1 P P
R.=P Q. +7—[M .-p m(@A . -Gl 9.14
2 pi pj I, " pzEj Po By ~ Gy ( )

where M .
PX)

moment 1\_/ij on the jth blade, not including gravity.

and M__. are the x_, and z_. components of external
z PJ PJ

There is no equation for épj because we have neglected the blade
inertia about the ij axis, ij, the angular velocity of the blade-span
axes along ij’ depends explicitly on the blade pitch control input and is
not a state variable. It may very well be negligible.

Equations (9.13) and (9. 14) are integrated to obtain ij and Rpj s
respectively, for the jth blade, They must be repesated N times for the

N blades (j=1,2,...,N).

A.2.10 AERODYNAMIC FORCES ON BLADE SEGMENTS

In Section A, 2.8 we developed the equations for determining the

tangential (U , radial (URik)’ and perpendicular (Uij) components

= t
of velocity ij of the k h segment of the jth blade. These components

Tik)

are taken, respectively, along the blade span axes xpj s ij and ij’ as

shown in Figure 10.1. The total velocity of the kth blade element with

respect to the inertial reference frame is ij, which is given by
2 2 2 1/2 e
) /2 | v

. . + . .
Tik T Yrik ¥ Upik (10.1)

ij = (U jkl

The yawed angle of attack between the segment velocity vector ‘_,jk and
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its projection on the x ., . blade-span-axis plane is denoted b .
prol pi" "pj P ° Y Py

in Figure 10.1. Clearly

U
. Pjk Pik
sin ¢ IVJ i 1 (10. 2)
jk jk jk
and
2+
cos by = 1 1 (10.2)
jk ij
Also, from Figure 10.1, -ij’ the angle-of-attack yaw angle in the ij’
. plane, is given b
YPJ P g y
. _ Urjk 0
I LN N VE: (10.3)
Tjk Rjk
or
U
- Tik
cos ij = (UZ +U2 )1/2 (10. 4)
Tjk Rjk

Now in general at the kth segment, the blade itself has a pitch angle eAjk
with respect to the blade-span axes, measured in the ij’ zpj plane, as

shown in Figure 10.1. From the Figure it is clear that

_ (AB) _ (AB)
tan G_Ajk = (BC) = (B'C)COS ij (lO- 5)

We now resolve 6 into the plane containing the yawed angle of attack

Ajk

BY .. This resolved angle OY can be computed by noting that the dis-
jk jk
tance (A'B') = (AB) and
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Figure 10.1 Segment Geometry for Aerodynamic Force
Calculation
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_ (A'B') _ (AB)
tan eij - BE 69 (10.6)

But from Eq. (10.5), (AB) = (B'C) tan eAjk cos ij' Substituting this

into Eq. (10.6), we have

tan Oij = tan OAjkCOS ij (10.7)
The total yawed angle of attack, oy s is simply
jk
a = ¢ + 0 (10. 8)
Yk Yik o Yk
or
+
tan ¢Y'k tan GY‘k
tan ay = 1 ] (10.9)
jk 1 - tan ¢Y tan BY
jk jk
where
8)
Pjk
tan ¢Y-k = (UZ N UZ )1/2 (10.10)
Tjk Rjk
or from Eq. (10.4)
U
Pjk
tan ¢Y = U—L cos vy (10.11)
jk Tjk J

Substituting Eqs. (10.7) and (10.11) into (10.9) and solving for ay s
jk
we obtain

Up. tan 6 ,. +U_. )|cosy. |
N - tan-l Tik Ajk Pik jk

(10.12)
Yix U

2
Tjk—Uij tan OAJ,kcos ij

where the absolute value signs are added around cos Y; in accordance
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S oot

RS

. 1
with the NASA Ames model.” Also, the magnitude of the projection of

into the xpj’ zpj plane is given by
ik

Q.

®rRANS. © IQY_ cos ijl (10.13)
jk jk

. , ) et , )i
This xpj pr projection of angle of attack, namely aTRANSjk is used

as the angle of attack variable in the calculation of blade - section 1lift

and drag coefficients for small angles of attack! For larger angles a

variation of Eq. (10.13) is used, so that in general we writel

*rrans, - 1(%y. €08 v (10.14)
jk jk

The 1lift and drag coefficients also depend on the Mach number,

t
Mjk’ for the k h segment of the jth blade, which is given by
(UI‘Z{.k + Ulf_,.k)l/2
M, = 1 = (10.15)
jk a

where a is the speed of sound. Note that the Mach number is based on

s zp. plane and not the total velocity.
J
The segment lift and drag coefficients are given, respectively, by

the velocity component in the ij

Cok = fz("TRAstk, M) (10.16)

and

Cdjk = sgn ank f3(QTRANSjk' Mjk) (10.17)

with a correction factor in Cl'k for tip loss in the last blade segment.
J
It is assumed that the aerodynamic drag force Djk acts in the

direction opposite to the segment velocity ij’ as shown in Figure

10.1, and that the lift force ij is perpendicular to Djk and lies in the

1 Mackie and Alderete, op. cit.
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plane of the yawed angle of attack o . In general

T
L. =i,4a v c (10.18)
ik - 2P Pk Tk ek :

and
D =ipoa v¢ ¢ (10.19)
ik T 2P 2k Vik Cajx .

where p is the air density and Ak the area of the kth blade .segment. We

and D,

can resolve L,
jk

ik into force components F

e B
Tik Rjk and Fij along

the respective blade-span-axes xpj’ ij and zpj' From Figure 10.1,

we see that

F'Ijk = (ij sin ¢Y. - Djk cos ch. ) cos ij (10. 20)
jk ik
FRjk = (ij sin ¢Y-k - Djk cos ¢Y. ) sin ij (10.21)
j jk
g = = + i .
FPJk (ij cos ¢ij Djk sin ¢ij) (10.22)

Finally, we need to write the formula for the geometric pitch

of the kth blade segment. This is given by1

angle, eAjk
e . = - + - i +
Ajk OCUFF AlS cos(\][/j ASP) BIS Sln(\Iti ASP)
2
+6,[ —e'l-p. tand +K o +K_ &) 10.2
1'Y2Kk ] .SJ 3 @ J a, ] ( 3)

where ASP’ the swash plate rotation, is a control input and \Ilj, Bj’ and
8j are problem state variables. The remainder of the parameters in
Eq. (10.23) are constants, where only the Yor is dependent on the seg-
ment index k.
Equations (10.1) through (10.4), (10.12) and (10, 1)) through (10.23)

are used to compute the blade segment forces. They must be repeated

1
Mackie and Alderete, op. cit.
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Ns times for N blades with s segments per blade (k=1,2,...,s).

T e e A S AT TR

From Egs. (10.2) through (10. 4) we can rewrite Eqs. (10.18)

through (10, 22) in the following form:

R

1
w = = A : - .
48 Fric = 2P 2k Vil S Upik ©°% Yk = Caji UTjk] (10.24)
it
1 .
Fpik = 2P A ij[Czjk Uij sin - cdjk URjk] (10.25)
1 2 1/2
L= = . L U + .
Fpie = 2P A& vjk[cﬂ_]k(UT_]k Rjk Cdijij] (10.26)

These equations may be preferable to Eqs. (10.18) through (10.22)
for computer mechanization.
Note that we have not included downwash corrections in the seg-

ment velocity components U s U , and U with respect to the

Tjk’ ~Rjk Pjk
air flow because of uncertainty on just how to incorporate the correc-

tions. It appears that downwash effects, which certainly must be in-

cluded, will not add a2 major computational load.

A.2.11 BLADE MOMENT EQUATIONS

In the blade equations of motion in Section A.2.9 given by Eqgs.
(9.13) and (9. 1k) we see that the external moment components (not
including gravity), M__, and M__, along the x . and z_. blade span axes,

pxj Pz} PJ P]
must be calculated. In general the external moment vector I\_/ij consists
of aerodynamic and hinge moments, as expressed in the following equa-

tion:

b
I

— Y
Pj Maero Mhinge (11.1)
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r

where all moments are taken about the hinge point Pj in Figure 1. 1.
The aerodynamic moment due to the kth blade segment is simply the

cross product of the position vector, . from Pj to segment c. p.

Y21 Pl
times the aerodynamic force at the kth segment, The force components
are given in Eqgs. (10.20) through (10.22) or (10. 2)) through (10. 26).
The total moment is the sum of the segment moments. Thus

S
M = 2y 3 . x(F B )

- + i +
aero Y2k JpJ Tk 1pj FRJ' k Jpj FPj k pj

or

S
2 i (11.2)

s
M = 2 Vo, F . .
i=1 2k " Tjk | pj

aero io1 Y2kF Pk pj

The hinge momaeants are due to the spring-damper constraints for the

lagging and flapping degrees of freedom of the blade. Thus MLD" the
]

hinge lagging moment for the jth blade, is given by1

M. . = L_[f(s.) + sgn 5.F! 11.3
L.Dj L (sJ) gn &, 5] ( )

Reference to Figure 1.1 shows that for positive 5J, the opposing
moment due to spring restraint will act in the direction of z;j and

hence has a component M co.s;Bj along ij'

LDj
1
MFDj’ the hinge flapping moment, is given by

MFDj = -[KBBJ.+KBBj] (11. 1)

Reference to Figure 1.1 shows that for positive Bj, the opposing momeant

lies along the xpj axis. Thus

+
Mhinge ’BJ K

i, +L_[f(5.) +sgn §.F'.]Jcos B.k . (11.5
]pJ [ 5;) *sgn &, 5] Bk )

BB, L

1
Mackie and Alderete, op. cit.
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Combining Egs. (11.2) and (11. 5), we obtain the following equations for

the respective components of IT/IP_ along xpj and =z
]

pxi T (0 VorF pik - Mppj (1. 6)
My T - D
- . . .
Pzj et Yok FTJk MLDJ cos Bj (11.7)
where MFDj and MLDj are given in Egs. (11.3) and (11.)}). Equations

(11.6) and (11.7) are repeated N times for N blades (j=1,2,...,N).

A.2.12 EQUATIONS FOR COMPUTING .Sj AND éj

In Section A.2.2 we developed the equations for computing the
components of ari' the angular velocity of the rotating shaft axes, xrj’
Vo .s zrj' and hence the axes x'rj’ y'r., z'rj in Figure 1.1. Because Eri

Tj J
is the same for all N blades, the subscript j denoting the jth blade is not

included in Eri' Equations (9.13) and (9. 1k) in Section A.2.9, when

integrated, give components of Epi , the angular velocity of the jt
j .
blade-span axes. The angular rates éj and Bj for the jth-blade lagging

and flapping angles are related to the difference between Epi and 51_.1,

i.e.,

Q =Q ., -9 . (12.1)
prj p1j ri

— th
h Q is the angular velocity of the j ~ blade- n axes, .s .
where pr. i e gu velocity j e-spa pr pr

. .th :
z I with respect to the j rotating shaft axes, xrj’ Yrj’ zrj' or

'j, y'r., z'r.. From Figure 1.1 we see that

equivalently, x -
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) = -3 k' -83. 12.2)
pT 85%ei = Pitpj (12.2)

where l-c'rj is the unit vector along the z'rj axis and i-pj is the unit vector
along the x ., axis.
P]

Also, from Figure 1.1 it is apparent that

' = cosB.k ,-sinfB.7 . (12.3)
Krj B kps Bs Ips

Substituting Eq. (12.3) into (12.2), we obtain

Q = -B.3.+4.sinB.3.-5.cosB. k. (12. 1
23 Bjipj T 855 Byin; - 8; Bs kpj )

Also, from Eq. (12.1) we can write

g =, -PPOi .+ .-QPhf . +®r_.-RPOk ., (2.5
Prj PJ ry Pl Pl r;Tpl PJ ry P)
where ij, ij, R . are the jth blade-span axis (P-frame) components
= ys) P be) .th . =
of 2_., and P*,, Q°., R™, are the j ~ blade-span axis components of Q ..
p1 rj rj rj ri

Equating coefficients of i-pj and Epj in Egqs. (12.}4) and (12. 5) and solving

for éj and Bj’ we obtain

. 1 P
o= -RP - R . (12.6)
% cos BJ- rj PJ)
and
Y p
. = P . -P . 12.7)
BJ rj PJ (
Equations (12. 6) and (12.7) are integrated to obtain BJ. and 5J.,
respectively.

A,2.13 COMPUTATION OF HINGE SHEAR FORCE

Each blade has acting on it the sum of the gravity force, ma, the

aerodynamic force, F » and the hinge shear force at point P,, - F_ .
aero j pj

The sum of these forces must equal the blade mass m times the
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acceleration of the jth blade c.g., Kci . Thus,

= o + F -
mAcij mg Faero FPj (13. 1)

where we have written the hinge force acting on the blades as -FP

J

since the opposite force, F_ , will be the blade force acting on the hinge.

PJ
in Eq. (13.1) we have

Solving for ij

FPj = - m(Aci. -G+ Faero (13.2)

In Section A.2.7 we have developed the equations for KPi - G, the ac-
j
celeration less gravity of the hinge point Pj' From this we must now

determine the acceleration less gravity of the blade c.g. By direct

analogy with Eq. (5.1) in Section A, 2.5

A, -G=A_, -G+Q_. xp .*9 . xQ, xp . (13.3)
Clj plj p1j cj plj plj cj

where 5cj = pcj-pj' the position of the blade c.g. with respect to the

hinge point P,. Noting thatQ . = PP I + Qp.j- . +RP. K . and
J P1, P] PJ P} " PJ Pl Pl
Q. = P21 .+ OP I . +RP.K ., we obtain from Eq. (13.3), the
Plj P) P P} PJ Pl PJ
following_three scalar equations:

AP _GP - AP  _GP +p @ P .-R ) (13. 1)
cxj | xj pxj ~ "xj Ccpi pi  pi

AP LGP - AP LGP -, ®Z +P%) (13. 5)
cyi ~ i pyi - vi T Petpi T

AP _GP - AP -GP 4+ @ R ,+D ) (13. 6)
czj ~ 'zj pzj  ~zj Pcpipi  pj

where AP . - Gp., AP . - Gp_, and AP , - GP, are already given in Egs,
PX] X) PY] y) pPz) z]

(9.10) through (9. 12).
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aero is, of course, just the sum of the aerodynamic forces on
er '

each blade segment, as given in Egs. (10.20) through (10.22) as com-

th
ponents F'I]' K’ FRj 1’ Fij along xpj’ ij’ zpj for the k~ segment.
Thus the hinge shear force components Fij’ FPyj' Fsz along xp, yp,
Zp become, from Eq. (13.2)
P _ P _ &P, <
Fij = m(ACxj ij) > F " (13.7)
TJ
k=1
P = -m@aP  -GPy+ LF_ . (13.8)
Pyj cyj k=1 ™
S
FPZj = m(Aczj sz) o Fij (13.9)

These force components form the output of block 13 in Figure 2. 1.

A.2.13 TOTAL ROTOR FORCE

The hinge shear force components, FP FP .» and FP for the

Pxj’ ~ Pyj Pzj’

jtl’1 blade, as given in Eqgs. (13.7) through (13.9) in the previous section,

must be summed for all N blades to compute the total rotor force acting
on the aircraft. But first the individual blade forces must be resolved
into rotating shaft axes, i.e.,

- T

F. = [T ]ff; = [T ] FP (14.1)

r
P, r. . . .
J P ) J J J

where [Trp] is given in Eq. (2.18). Thus

r _ . P . P . .
F. . =fFP .cos 5, +F _sin g, cos B, + F. _ sin s, sin f3, (4. 2)
Pxj Pxj j Pyj j BJ Pzj j BJ
r - P : P P .
F. . = «F" sinp +F. .cos 5.cos B, +F_ _cos 5, sin 3, (14.3)
yJ xj j Pyj % BJ Pzj j BJ
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i
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o
i
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r P . P
F_. = -F_ .sinf, +F_ L cos f 1L,
Pzj Pyj BJ Pzj BJ (14 1)

Next the components must be resolved into shaft axes, which are com-

mon for all blades, i,e.,

=s =r T=r
FP. - [Trs.]FP. - [Tsr.] FP. (1k.5)
J J J J ]
where [Tsr ] is given in Eq. (2.10). Thus
j
s T r
F_. . = F_ _.sin® -F_ , cos I 1). 6)
Pxj Pxj j Pyj J (Lh
s r T
F_. =F .cos ¥ + F . sin I, (14.7)
Pyj Pxj i Pyj j
s r
Fsz = Fsz (14.8)

Summation over the N blades produces the total rotor force components

along shaft axes. Thus

N
S > gS
FRx T, Fij (14.9)
j=1
N
Fo- 2 F (1. 10)
Ry 21 Pyj
J_
N
Foo- 2P, (1h.11)
Rz j=1 Pzj

To obtain the body axis force components, we use the transformation

—=b =S =5 T—s
Fp = [T JFg = [T 0Fp = [T 17 Fg (14.12)
where [st] = [Tsh] because hinge and body axes have the same direc-

tion. Using Eq. (2.3) for [T, ], we obtain

hs
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b s s s
- .4 .. i+ . i .
FEX F cos 19 FRY sin 1¢ sin 19 FRz cos 1¢ sin 19 (14.13)
b s : s
= i - F i i ®
FRY FRY cos 1¢ Rz sin 1¢ _ (Ih. 1))
Fb = Fl;s ini, + FS in i i, + FS i i, (14.15)
Rx - ~ sin ig Ry sin 1¢ cos 19 Rz cos 1¢ cos 10 L.

Equations (lk.2) through (14.}) and (1k. 6) through (1}. 8) must be
repeated N times for N blades. Equations (1}.9) through (1%.11) and

(14, 13) through (14.15) complete the rotor force computation,.

A,2.15 TOTAL ROTOR MOMENT

The moment transmitted through the jlCh hinge for each blade con-

sists of hinge spring damper components - MLDj along z'rj and MFDj';

along xpj in Figure 1.1, where MLDj and MFDj are given in Equations

(11.3) and (11.}). These moments are transmitted through to the hub

along with the moment resulting from the hinge shear force FP' calcu-
J

lated in Section 13. Thus the total moment I\_Zhj acting at the hub for

the jth blade is given by

M, . - ko, + i .+e. xF

th MLDJ krj MFDjlpJ ej X FPj (15.1)

where éj = ej-rj and is the vector position of hinge point Pj with respect

to the hub. We continue to neglect any monents along Yi‘j and hence Yoae
J

The component of MFDj i-pj along X;‘j and hence xrj is simply MFDj

Equating scalar components along i-rj’ j—rj and Erj in Equation (15.1),

we obtain

r
M = +
hxj MFD_] cos 5§, te Fsz (15.2)
T r
ME = oM. - .
hzj LDj ~ © Fpx; (15.3)
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i We resolve these components to shaft axes with the formula
Moo= [T_Mp = [T_1TM] (15. 1)
hj rs hj ST M'hj ‘

where [T ] is given in Eq. (2.10). Thus, since we assume M}I; . =0,
ST )2l

s r .
I\/I_hxj = thj s1n\IfJ. (15.5)

s r
M'th = M‘hxj cos \IIJ (15.6)

s r
1\/Lhzj = 1\/Lhzj (15.7)

Since the shaft axes are common for all blades, the moment components
in Eqs. (15.5) through (15.7) due to an individual blade can be summed
over the N blades. Thus we have for the total rotor moment components

at the hub the following equations:

N
S S
My = _E My (15. 8)
j=1
>
s s
M. = . .9)
hy = & My (15.9)
j=1
S
My = jt; 23 (15.10)

" These are resolved into hub and hence body axes using the formula

-3 —g

- Ts
M, = [st]Mh = [Tsh]M.h = [Ths] M (15.11)
where [Ths] is given in Eq. (2.3). Thus
Mb _ s cos i. + M in i in i o+ M . s 15.12
hx - I\/Ihx s i, l\d.hy si 1¢ sin ig I\/Ihz cos 1¢ sin iy (15.12)
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s . S .. .
M'hy cos 1¢ -Mhz sin 1¢ (15.13)

£

s s s
. P .. .1 . .
.N[hx sin 19 NLhY sin 1¢ cos ig M'hz. cos 1¢ cos ig (15, 1)4)

These hub moments are transmitted to the aircraft c.g, Also transmit-

3

ted to the aircraft c.g. is the moment EH X FR’ where fR is the rotor

force acting at the hub and computed in Section A. 2.1}, and ;:H is the

moment arm from aircraft c.g. to hub., Thus the total rotor moment

M_ acting about the aircraft c.g. is given by

R

_ T o4z —

MR M'h Ty X FR (15.15)
where Egs. (15.12) through (15.11) give the components of hub moment
—_ - - - - - b -

= i, + i, + =
Mh along body axes, Ty T X iy TVgiy T2y k , and FR F iy
b = b =
+ oL . . - C . . . .
FRbi FRzk'b Making these substitutions into Eq. (15.15), we
obtain
b o) b b

= + -

MRX M:hx Vi FRz Zop FRY (15.16)
b b b b
= + -
MRY M_hY Zyy FRx Xy FRz (15.17)
) b b b ‘
= + - r
MRz 1\/[]Z XH FRY YH bRx (15.18)

These are the rotor moment inputs to the rotational equations of motion

in Section A, 2. 1.
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APPENDIX B

SCALING CONSIDERATIONS IN SOL VING THE HELICOPTER
FLIGHT EQUATIONS

B.1. BLOCK1

In solving the helicopter flight equations using either a hybrid
computer or a fixed-point digital computer, the scaling relationships
between problem variables and computing-machine variables must be
considered, Fortunately the maximum range of each problem variable
in the equations of motion is either known or easily estimated. Under
these conditions one can define new dimensionless problem variables
given by the original variable divided by the maximum magnitude of the
variable. Then by letting one computing machine unit equal one dimen-
sionless problem unit, one can easily mechanize the equations. In the
following sections we will discuss the application of this approach to each
of the 15 computational blocks in Figure 2.1 in Appendix A containing.
the equations given in Sections A, 2.2 through A, 2,15,

First consider the 3 translational equations given in Section A. 2.1,
Eqs. (1.12),(1.13), and (1.14). First we divide the equations by the gravity
acceleration 8,» SO that every term in the equations is a dimensionless

acceleration in units of g, Thus

Ub Wbe VbRb . Fbx
— - _ + - sin Gb+ Ve (1.1)
€o €o o o
v U, R W, P F
b b b
5 __ b+ b + cos 0, sin¢b+—1v’1“zx (1.2)
g €o o o
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Wb Vbe Ube sz
—_— = + + cos Gb cos ¢b+ m" (1. 3)
& & & o

Rather than use a separate maximum range for each variable, it
would appear simpler to use a single maximum range for each group of
three variables representing scalar components of a single vector. For
example, if Vma.x is the maximum expected magnitude of the vehicle
velocity vector, then we define dimensionless body-axis velocity com-

ponents (using lower case letters) by the following formulas:

U Vb Wb
u_b = v R vb = v R Wb = v (1. 4)
max max max

Similarly, for Qmax assumed as the maximum magnitude of the body-
axis angular velocity vector, we obtain the following formulas for dimen-

sionless angular velocity components:

P
b 5% B @ 5)
P, T 0 + B T Q » Ty T Q .
max max max

Although this scheme is not quite as efficient as introducing a separate
maximum value for each individual component, it is simple and should
easily provide sufficient accuracy when a 16 bit digital word is employed
for each dimsansionless variable.
Let us also define dimensionless external body-axis force com-
ponents as follows:
F

x Mgo Mgo max, y Mgo Mg ’ “bz Mgo Mgomax :

0 max
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Using Eqs. (1.4) - (1.6), Eqgs. (1.1) - (1. 3) become

ub/Qma.x =[ Wy Gyt vbrb-kg sin@, + kffbx] (1. 7)
Vb/Qma_x= [ ~w T+ Wy pyt kg cos®, sin¢, + kfiby] (1. 8)
Wb/Qma.x =[ -V, Pt ubqb+ kg cos eb cos ¢b) + kfibz] (1.9)
where the constants kf and kg are given by
g F
o b
k =5—g—, k.= k () (1.10)
g ma.mea,x £ E Mgo max

and will both be less than unity for any practical case.

All the variables on the right side of Eqs. (1.7) thru (1.10) are
dimensionless and easily interpreted. To retrive the
scaled variables (e.g., for display purposes) one need only multiply by
the maximum value used to make each variable dimensionless. The
common factor Qmax in Egs. (1.7) - (1. 9) is simply the integrator gain in
an analog mechanization. In digital integration Qma.x is multiplied by the
numerical interval of integration T, where clearly the product Qma.xT <1
in any practical case. It also seems clear that the sum of the bracketed
terms on the right side of Eqs. (1.7) - (1.9) is quite unlikely to exceed
unity. This is because terms such as W gy in Egs. (1.9) have 2 maximum
possible value of unity, which represents an actual acceleration equal to
Typically, we might have Vmax = 300 ft/sec, Qma.x =1 rad/

2 .
max max

sec in a helicopter simulation. Then V Q = 300 ft/sec2 or almost
max max
10 g's. Even if both u and q, reached maximum values simultaneously,

i.e., corresponding to an actual acceleration magnitude of 10 g's, the
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the remaining terms within the brackets in Eqgs. (1. 7) - (1. 9) would have
much smaller equivalent accelerations in any allowable flight ma.néuver.

Next, we consider the rotational equations of motion given by
(1.22), (1.23), and (1.24) in Section A.2.1. We define dimensionless
external moment components by

be/ IVLb Mb / Mb sz 1\/Ib
Pt T /T ey = T [T my T D)
XX m vy ax

I
m ZZ

aAxX

Using Eqs. (1. 5) and (1.11) above the rotational equations (1. 22), (1.23),

and (1. 24) in Section A.2.1 become

pb Izz-IzX
Q =- (=3 JayTy, Tk Mo (1.12)
max
a I -I
b _ XX ZZ
a R S N Y (1.13)
max vy
'rb LA
Q == I ) pbqb + kmmbz (1.14)
™max zz
where
M
b 1
k = (—) (1.15)
m I max Q2
max

All terms in Eqs. (1.12, (1.13), (1.14) are dimensionless and will
remain less than unity, with the kmmbx’ kmmby" and kmmbz terms
predominating (the effect of external moments). Pys Qs and r, are
obtained by integration of the respective equations using an integration
gain of Qm .

ax
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In terms of dimensionless angular rates the Euler angle equations

(1.25), (1.26), and (1.27) in Section A. 2,1 become

¥
b .

S = (1-b cosci>b + a9 smqab)/ cos Bb (1.16)
max

b _4 cosé sin (1.17)

Q ) b~Tp 309y )
max

$ §
b b .

S =Py t g smeb (1.18)
max max

Again, integration with gain Qmax yields qu, eb, ¢b. Actually, the gain
will be Qma_x/':r so that the resulting angles range over + 1, correspond-
ing to + w radians.

Finally, the equations for earth-axis velocities, (1.30), (1. 31), and

(1. 32) in Section A. 2.1, become

S
x : . .
v = ubcosebcoqub + vb(-cos¢bs1nq;b+ sm¢bsm9bcos¢b)
max
+ Wb(SI.ncI>b smL[Jb + coscbbsmObCOSLpb) (1.19)
S
Vmax = u, cos ebsmnpb + vb(cos¢bcos¢b+ smq;\bsmebsqub)
+ wb(-sm¢bcos¢b+ cos¢bsmebsm¢b) (1.20)
S h
Vmax = Vmax = --ubsmeb + vbsm¢bcoseb+wbcosebcos¢b (1. 21)

Here the integrator gains will depend on the desired range in distance

north (Sx)’ distance east (Sy) and altitude (h = -Sz).
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B.2 Block 2
Here we compute the angular velocity components of the rotating
shaft axes. As before we use lower case letters to denote dimension-

less components., Thus

s Ps S . S R:
pr = ’ qr = Q ’ rr =Q (2.1)
max max max

Then Egs. (2.7), (2.8), and (2.9) in Section A.2.2 become

s _ . s
pr—pbcos 1e rbsm1e (2.2)
5 _ s s s . - .
qr-pbsm1¢s1.n16+qbcos 1¢+rbsm1¢cos iy (2. 3)

s Qs

rr -9 = pbcos 1¢ sin 1e-qbsm 1¢+ rbcos 1¢cos 16 (2.4)

max
s . s
Note that r_ -Q /Q is computed rather than r . Thus we compute the
r S max r
dimensionless difference between the z axis components of rotating
shaft axis angular velocity and angular velocity of rotating shaft axes
. . . s
with respect to shaft (non-rotating) axes. In this way rr-Qs /Qmax does
not exceed unity, whereas r° would, since (2 ) > > Q .
r s'max max

Eqgs. (2.12), (2.13), and (2.14) in Section A. 2.2 are simply re-

written in dimensionless form, i.e., with lower-case letters. Thus for

the jth blade

r s . S

vy = P, s1anj taq coquj (2. 5)
r s s .

s = P, coquj taq SlnLIJj (2.6)
r % s 2

Trj TQ =T T0 (2.7)
J max 3 max
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Finally, from Eqs. (2. 20) and (2. 22) in Section A.2.2 we have

the following expressions for dimensionless.blade-span axis components

of rotating shaft-axis angular velocity:

pfj = p;. cosfsj-q’;'j sind (2. 8)
P ¢ r r r Qs
rrj —Qmax cosﬁj = prj sm6J.s1n[3j + qrj cosﬁjsmﬁj+ (r -Qn’lax)cosﬂj
(2.9)

where we have not included the formula for qE_ since it is not needed.
J

B.3. Block 3
In this block the angular acceleration components of the rotating

shaft axes are computed. In terms of the dimensionless angular accelera-
tion components given in Eqs. (1.12), (1. 13), and (1. 14) in Section B.1

Eqs. (3.6), {(3.7), and (3. 8) in Section A, 2. 3 become

. s .
p p. r
s . b s
Q = cosiy-g sin iy (3.1)
max max max
s P’ .. % : r . :
S =5 sm1¢‘51.n1e +Q cos 1¢ +Q Sln1¢COS i (3.2)
max max max max
+5 3 . +
s __tb cos i, sini % sin i, + cos i cos i (3.3)
Q Q b 6~ Q ¢ Q b 8 )
max max max max

Egs. (3.17) and (3.19) in Section A, 2. 3 for the jth blade become

'Pr .ps q S
j s
S B e cosu, (3. 4)
Q Q j Q j
max max max
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rj 8 max r
' = 3.5
Q TQ (3. 5)
max max

Note that ¥', -Q /o is computed rather than i'r_ . This is because
T s max Tj

in general (2 ) >> Q , i.e., the angular acceleration of the
s max max

rotating shaft axes with respect to the shaft axes (non-rotating) can be
much larger that the overall aircraft angular accelerations. Thus
i-:j-S'ZS /Qma.x will remain reasonable in magnitude, whereas i-ij by itself
will not.
B.4. Block 4

In Block 4 of Figure 2.1, Section A, 2.2, the hub-axis velocity
is computed by adding the velocity of the hub relative to the body axis to
the body axis velocity. The relative velocity components are normalized

by dividing the actual components by Vrrn , the maximum value of the

ax

hub-to-body relative velocity. Thus

b b b
b _ 9w b __'mb b a1
Yy TV * Vhb TV * Vhh TV (4.
rmax rmax rmax

If dma.x is the largest of hub relative position components Xpos Vg Zpp

then clearly

=Q d (4.2)
rmax max max

In general V will be small compared with V , the maximum air-
rmax max

craft velocity., From Egs. (4.1) and (4.2) along with Eqgs. (l.4) and (1. 5)

in Section B.1l, Eqs. (4.4), (4.5), and (4.6) in Section A. 2. 4 for the hub-

to-body axis relative velocity components become
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z y
b " H
Y Ta 9~a b (4.3)
max max
p.4 zZ
b H H
Vhb ~d Ty T g P, (4. 4)
max max
Y X
b H H
Yy T d P,-a 'S (4. 5)
max max

Then Eqs. (4.9), (4.10), and (4.11) in Section A.2. 4 become the
following for the dimensionless hub-axis velocities along the shaft axes:

S 2 (u 4k o) i - (w tk WP
U T TR M €08 o TR Y,

) sin i

0 (4.6)

s A b .. .. b . b .. .
V.= (ub+kruhb)sm 1¢ sin 1e+(vb+kruhb)cos 1¢+ (Wb+kr_whb)sm 1¢cos i

)
(4.7)
wo=(uw 4k w2, )cos i, sin i ~(v. +k v°, )sin i, + (w, +k w2, )cos i, cos i
P T W & o~ "+ Vhp R RSN b )
(4. 8)
where
A rmax max max
k = — 2 (4.9)
max max

In Egs, (4.6)-(4. 8) we have used V to make u® , v , and w" dimen -
max T T T

sionless, i.e.,

S U: S V:‘ S W:
= = = 4,10
=T 'V, v s W v ( )
max max max

A

Note that the constant kr will generally be small compared with
unity,
B.5 Block 5

In this block the hub-axis accelerations are computed from the
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* body-axis acqelerations less gravity, The latter are simply the external
forces acting on the aircraft divided by the aircraft mass. Thus the
maximum magnitude of body-axis acceleration iess gravity is simply

(Fb /M)max. This is then used to define dimensionless components of

body-axis acceleration less gravity, i.e.’

A -G A, -G A -G
a -g =_x_x_ab_g__iy__y__a g__ba__z_(Sl)
bx “x (Fb/M)max vy (Fb/M)rnax bz "z (Fb/M)max

We also use (Fb /M)ma.x to define dimensionless components of hub-axis

acceleration less gravity. Thus

A - - A -
hx Gx Ahz Gx hz Gz

g == ,a, -g = y 2y =g = (5.2)
hx ®x (Fb/M)ma.x hy Y(Fb/M)ma.x hz ®z (Fb/M)rn

a
ax

From Egs. (1.5) in Section B.1, Eqs. (5.1) and (5.2) above, and Egs.
(4. 3), (4.4), and (4.5) in Section B. 4, Eqgs. (5. 5), (5.6), and (5.7) in

Section A, 2, 5 become

z q v T
_ A b b H b H b
A "8y Py B R (Y TV, T e "4 a ) (5.3)
max max max max
X T z p
A b b H b H b
a.hy-gy— aby-gy+ka(rbuhb-pbwhb +3 "3 5 ) (5. 4)
max max max max
y P x a
A b b o P H %
P hz 8 8 TR Py Vi R Y T e " 4d g ) (5. 5)
max max max max
where QZ
Q _ _max max (5.6)

s (Fb /M)ma.x

For the dimensionless components of rotating shaft-axis accelera-

tion less gravity we have from Eqs. (5.10), (5.11), and (5.12) in Section
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Ty

A.2.5

s s . ..
rx By = (a.hx-gx)cos ig - (ahz-gz) sin i, (5.7)

8 ]
a -g =

_ e s s s - - _ < . .
ry By (ahx gx)sm 1¢sm 1(—)+(a'hy gy)cos 1¢ (ahz gz)smlcos1 (5. 8)

¢ 6
a:z-g:=(ahx-gx)cos i¢ sin ie-(ahy-gy)sin i¢ +(a.hz-gz)cos i¢ cos i9 (5.9)
B.6. Block 6

In block 6 the velocity of the blade-span axes, i.e., the hinge
point Pj for the jth blade, is computed for each of N blades (j =1,2,...,N).
Again we use Vma.x (the maximum body-axis velocity) to normalize the
velocity components, which in dimensionless form are given as lower-
case letters. Also, we recall that Qmax (the maximum bhody-axis angu-
lar velocity) is used to normalize the angular velocity components. Thus

from Eqs. (6.2), (6.3), (6.4), (6.8), (6.9), and (6.10) in Section A.2.6

we obtain for the jth blade

Q e ef?
T _ 8 . s T s max max
u .=u siny +v cosy .-(r .- ) - w (6.1)
bj T Ior qJJ ) Qmax Vma.x Vmax s
r s s
v .=-u cosy, +v sinl, 6.2
pj r lPJ r LIJJ ( )
s eQmax r
T
w.,=w +———— p.. (6.3)
PJ r Vma.x T

where the dimensionless angular velocity @ of the rotating shaft axes

relative to the non-rotating shaft axes is given by

w = (6. 4)
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Note that r™ -2 /2 __, as computed in Eq. (2.7) of Section B. 2,
rj s max
is used in Eq. (6.1) rather than r;. itself to preserve good scaling. For
J
e, the distance from hub to hinge, equal to perhaps one or two feet and
Q t Q i -
A equal to perhaps 30 rad/sec, clearly e A /Vma.x will gen

max max
erally be small compared with unity. Since Qma.x << Qs , clearly

max
e Q /v is quite small compared with unity. Thus good scaling of

max max
Egs. (6.1), (6.2), and (6. 3) is assured.
B.7 Block 7

Here we compute the dimensionless components of acceleration
less gravity for the hinge point Pj of each blade. First we write the di-
mensionless components of rotating shaft axis acceleration less gravity.
In Egs. (5.7), (5.8), and (5.9) these are given as components along the
shaft axes. Using the transformation matrix [ Tsr] in Eq. (2.10), Sec-

tion A, 2.2, these become the following components along the rotating

shaft axes for the jth blade:

r r s s, . s s
a'rxj -ng = (arx-gx)sm¢j+(a.ry- gy) cos qu (7.1)
T T s s s s
.~g .= =-(a =~ cosy . +(a =~ siny ., 7.2
ryi Bys™ (B, mg )cosy K - ) sind, (7.2)
T r s S
arzj-gzj— 32782 (7.3)

Next Eqs. (7.5), (7.6), and (7.7) in Section A. 2.7 are used as the
basis for computing the dimensionless components of blade-span-axis
acceleration less gravity. We recall that (Fb /M)max is the normalizing
factor for acceleration compounents and Qma,x for angular acceleration

and velocity components. Also, Eq. (2.7) in Section B. 2 shows that
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r -2 /2 is computed rather than s _directly., Similarly, Eqs. (3. 5)
rj s’ max Tj
shows that (3% .- @ /2 y/2 is computed rather than T /0 . We
rj s max’ max rj max
also note that © = Qs /Qs in Eq. (6.4), Section B.6, With these

max
considerations we obtain the following equations as the dimensionless

equivalents to Egs. (7.5), (7.6), and (7,7) in Section A, 2. 7:

T -9/ .
r xr r r r T *J s max OJS
a .-g .=a .-g .tk pP. - -k k 7.4
pxj Exj ~ Prxi Exi” Tq [ IriPrj 2 ax -] qrf (7.4)

r T 2 2 r r r 2 r 2 r
- = - - -0 /Q . - =02 /Q \
a’pyj gyj+qurws aryj gyJ q[ (rrj s/ max) +(prj) ] qukr(rrj s/ ma.x)ws

. T 7.5
prj (7.5)
T r__T T r, T r
- = =g -Q /Q + .
2z Bz axi 8,5l c.lrj(rrj AR L T4k kq o (7.6)
max
where > Q
(Qmax) © ®max
k=——7F——, k = —— (7.7)
q (Fb /M)max T Qma.x
Typical parameter values might be Qmax =1 rad/sec, e = 2 feet,
(F, /M) =100 f1:/sec2 (~3g), @ = 30 rad/sec. Then k = 0, 02,
b max s q

max

kr = 30. Thus the term quiwi in Eq. (7.5) can range up to 18, so that

subtraction of this centrifugal acceleration from the Y, component of
hinge acceleration-less-gravity improves the scaling c?ansiderably.
B.8. Block 8

In block 8 Egs. (8.5),(8. 6), and (8.7) in Section A.2.8 are im-
plemented to transform the blade -span axis velocity components from

rotating shaft axes (R-frame) to blade-span axes (P frame). In dimension-

less form the equations become
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uP, = ur, cosd ,-irr. siné , (8.1)

pi P j Pj j
vP. = w .siné .cosf +v' .cos .cosf .-wr.sin[i . (8.2)
PJ PJ J J Pl J J P) J
wP.= u’ .8inb .sinP A4V’ .cosb .8inf .+wr.cos§3 . (8. 3)
PJ pJ J ] P J J P J

Eqs. (8.8), (8.9), and (8.10) in Section A. 2. 8 give the tangential, radial,
and perpendicular components of the center of pressure of the kth segment

of the jth blade. the tangential component, will in general be the

U
Tjk’
largest, with a maximum value well in excess of Vmax’ the maximum

aircraft velocity, Thus we use meax as a normalizing factor for the

blade-segment velocity components, where meax ~ 1000 ft/sec. Then

the dimensionless components for the kth segment of the jth blade become

8) U U
T- R. P-
S T R e Sk (8.4)
J bmax J bmax pJ bmax
where these components are, respectively, along the ij’ypj’zpj blade -

span axes,

Let @ a be the maximum value of the components ij ,ij, and

R .-Q2 of blade-span axis (P-frame) angular velocity. We use @ as
pJ] s pmax

the normalizing factor for the dimensionless blade-span axis angular

velocity.components., Thus for the jth blade

P . Q . R_.-Q Q
p =Bl g Bl . o, o—Pl® . _smax (8. 5)
Pi Q PJ Q PJ S s -]

pmax pmax pmax pmax

where w = /2 as defined in Eqs. (6. 4), Section B. 6,
S S smax
Noting that Vmax is the normalizing factor for the velocity com-

ponents in Eqs. (8.1), (8.2}, and (8. 3), we have from Eqs. (8. 4) and

86



(8. 5) the following formulas equivalent to Eqs. (8.8), (8.9), and (8.10)

in Section A, 2, 8:

Q Q
Vmax P Ema.xyzk smax J2k
YmikT vV, Uy T Y (r '-ksws)- v, ws (8.6)
J bmax PJ bmax P bmax
Vmax P
by, T Vv . (8.7)
uRJk meax PJ
Vmax P Qsmax
u,.,, =Tr—— W, t+ = P.. (8. 8)
Pjk Vbmax PJ mea.x PJ

Here the coefficient Vm /V will be less than unity whereas

ax' bma

max sz/mea.x will be near unity for the blade tip segments.

B.9. Block 9

In this block the blade equations of motion are represented. Egs.
(9.10), (9.11), and (9.12) in Section A.2.9 simply transform the components
of blade-span axis acceleration less gravity from rotating shaft axes to
blade-span axes. Rewriting the equations in dimensionless form using
Eqs. (7.4), (7.5), and (7.6) in Section B, 7, we obtain

aP P = (2T T )coss .~(af .-g.+k kZ ©° ) siné +k_kiwZsind . (9.1)
pXj %] xj %] i pyityi ar s i ar s ]

aP .-gp.+k kzwzcoséi .cosp .=(a.r .-gr.)sin6 .cosp .+(a.r .-gr.+k kzwz)cos 6.cosp .
PY] "Y) Qr s J 3} Px] "X) J J PY) V)] qr s J J
-(a;zj-g:j)sinﬁj (9.2)

agzj -glz)j= (arxj-gij)siné jsinﬁ j+(a;yj -g;j+quf_ cl>§)cos 6js inp i
Ha?_-g7 JeosP, -k Ko cosd oinf | (9.3)

where w =2 /Q , as given in Eq. (6. 4), Section B.6.
s s’ smax
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*

M__.and M__. in Section A.9 represent the x_, and z_, components
Px) pz] - Pl PJ

of external moment less gravity acting on the jth blade,respectively. We

make them dimensionless by dividing by (Mp/Ib)ma.x' Thus
M_ ./

B MExj/Ib pzj Ib
m .= (9. 4)

, M .=

Then the dimensionless counterpart of the equations of motion for the jth
blade given in (9.13) and (9.14) of Section A, 2.9 become, with the help of

Eqgs. (8,5) in Section B. 2, the following:

p

A A
Q_Bl_ = -Tc-l_ Ar .-k 0 )-q ,w +k m _-kf(ap ,-gp,) (9. 5)
max s Pipj s s "pis m pxjf pzj -zj
¥ '_ks(:)s 1 A A d)s
b= 2. L—pqupj+kmmpzsrkf(ap gl ) (9.6)
smax s J Pxj "x) pmax

where

A (Mpllb)max N pcrn(Fb/l\/I)ma.x

kn™ 0 Q o K = (9.7)

Q
pmax smax pma.xns max 1b

Eqgs. (9.5) and (9. 6) are integrated with gain QS to obtain ppj and

max
rpj-ks ws' They are repeated N times for N blades (j=1,2,...,N).
B.10. Block 10

In block 10 in Figure 2.1 in Section A, 2, 0 the aerodynamic forces
acting on the individual blade segments are computed using Eqs. (10.18)
thru (10.22) in Section A.2.10. First we define dimensionless tangential,

radial, and perpendicular velocity components for the kth segment of the

jth blade using the following formulas:
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F F E

_ Tik £ _ Rik £ - Pijk

Tik ~ 1 ’ "Rjk iA" 2 ’"Pjk 1 2
2 p max bmax 2 P max bmax 2 P max bmax
(10.1)

Assuming | Cﬂ jklma.x =1, Eq. (10.1) will define dimensionless force

components with a maximum value of unity., The normalizing factor
can easily be adjusted to accommedate the actual maximum Cl and Cd

range. From Eq. (10.1) above the dimensionless force equations can be

written from Eqs., (10.18) thru (10, 22) in Section A, 2,10, Thus

£ _ Ak 2 [ C . c ] 10. 2)
Tk~ Amax vjk ﬂjksmd)ij- djkcosd)Y:].k cos«,/jk (10,
£ _ Ak 2 [C . C ] si 10. 3)
Rjk™ A Vik ljksm¢ij' djk €8 ""ij sinygy (10.
" Z2 e +C . si ] 10. 4)
ik " A Vi [ Cgjrcos? ¥ djksm“’s%k (10.
where
o (u,f,jk + u12>\jk+ ui,jk)l/2 (10. 5)
The formulas for cosyjk, si.nyjk, cos¢ij, sind ij remain as before ex-
cept for the substitution of dimensionless velocity components u’i‘jk’uRjk’
tuk for UTjk’ URjk’ Uij'

The formula for eAjk is reasonably scaled as is, with all angles
in radians. The @y equation is rewritten using dimensionless velocities
jk

uTjk’ uRjk’ tuk’ as is the formula for Mach number at the kth segment,

Thus
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A'A
_ _bmax 2 2 \1/2
_Mj- — (uTjk + tuk) . (10. 6)

An alternative mechanization to Eqs. (10.2), (10. 3), and (10, 4)

is based on Eqs. (10.24), (10.25), and (10.26) in Section A.2.10. Thus

A
" _
Ik =& Vik [ <, jk “pik °%Yjk CdjkuTjk] (10.7)
max
A
R A Vil o K%j® ™Yk~ Cajk "Rk ] (10. 8)
max
A
M 2 2 1/2
fpjk™ A - Vie D Cpd®rie * Rid * CajrBik | (10.9)

Slight variations in the scaling suggested above may be needed to obtain
near optimal scaling, but the basic approach would be identical.
B.11. Block 1l

Using Eqs. (9.4) and (10.1) we can rewrite Egs. (1l 3), (11.4),

(11. 6), and (11. 7) in Section A, 2.11 as the following two equations:

s K. Q B.
m =k 2 () b ——f’——p p-Lsmex ] (1L 1)
PXJ Vk=1 YZ max J pmax j pmax s max
and
-8 Yy L .
m =k 21 (=2 ye 4L [ g5 )sgné . F. ] (1L 2)
PZ] Ykl Ypmax TR Mooy b
where
1 2
>pA v y
Kk = 2 max bmax ‘2 max (11. 3)

4 (Mb /Lb )ma.xIb
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B.12. Block 12

Next we consider the dimensionless form of Eqs. (12. 6) and (12, 7)
in Section A. 2,12 for éjand ‘3_] From Eq. (8.5) in Section B. 8 we note
that is the normalizing factor for ij and Rpj-Qs’ and from Eqs.
(2.1) and (2. 9) in Section B.2 @___ is the normalizing factor for PI:J_ and

Rrpj -Qscosﬁ i Thus Eqs. (12, 6) and (12. 7) in Section A.2.12 become

) k Q
1 =t [—S (rP - cosp ,)=(r .-k w )=k w (l-cosf )] (12.1)
pmax cosp ., kr T Qma.x j pj s 8 s s j
and
8. Ko
= = . - . 12,2
—J—Q k_ Prj = Pp; ( )
p max T
Here®w =Q /Q (Eq. 6.4 in Section B.6), k =Q /Q (Eq.
s s’ smax T s max max

7.7 in Section B.7) and ks (Eq. 8.5 in Section B, 8).

Q
smax pmax
We recall in Eq. (12. 2) that the two zpj -axis dimensionless angular rates,

rp.-(Q 2 ) cos B . for the rotating shaft axes (R-frame)and r .-k ®
s’ max ] PpJ] s

rj s

for the blade span axes (P-frame), do not include the component due to

rotor-shaft spin rate Qs=w Q2 I.e., it is8 subtracted off of each

8 s max’
component as computed respectively in Eqs. (2.9) in Section B, 2 and
(9. 6) in Section B.9. This avoids éomputing the small difference of
large quantities to obtain GJ Equations (12.1) and (12, 2) are integrated
with gain to obtain § , and §,.

p max j j

B.13. Block 13

To compute the dimensionless form of the acceleration compo-
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nents of the c.g. of the jth blade, we use 2pc9s mapr max 25 2

"normalizing factor. Recalling that (Fb /M)ma.x is the normalizing factor

for acceleration components of the hinge pbint Pa (see Eqs., 9.1,9.2,and
9,3, Section B.9), Qp max is the normalizing factor for blade angular
velocity components (Eq. 8.5, Section B. 8), and Qs max is the normalizing
factor for blade angular acceleration components (Eqs. 9.5 and 9. 6,
Section B.9), we can rewrite Eqs. (13.4), (13.5) and (13. 6) in Section

A,2.13 as follows:

aP Pk aP gP)+d [ q p - .rpj-ksws] it (13.1)
cxj °xj ¢ pxj ~xj 2 ks Pi pPj Qs masx 2 meax
aP g+ 21+ 108 2k [aP -gP.+k K2 P coss .cosp.]
cy) 7yl 2 P 8 ¢ PYJ ¥yl ar s J j
) 2 kswi e
_—2?5 [ ppj+(rpj-ksws) ] -ws(rpj-ksws) +-——2—— ( -‘-): )(l-coséjcos [Sj)
. (13. 2)
aP gP=k (P gP)+i[lq (¢ ko )+q .0 fBi ] (13. 3)
czj “zj "¢ pzj “zj 2 ks Pj 'pj s s pj s Qsma.x
where y
F /M
k =z: 5 ey (13. 4)

Q
c smax pmax
kg e 2 :
In Eq. (13. 2) the term > 1+ p— )w s represents the negative of
_ . c
the centrifugal acceleration of the blade c.g. By substracting it from
the total ij axis acceleration component we improve the scaling by a
very sizeable factor.

For the normalizing factor for the components of hinge shear force

let us use Zmpc .Qs ma.xgp max * Thus
x
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F F

£ = pxj P PYi
- 1] = = Q
PxJ Zm P CQS ma.xQ max PYJ Zm p CcC S maxﬂ max
P p
FP .
£ = R2] (13. 5)

Pzj ~ 2mp 2 Q
c smax pmax

Using Eqgs. (13.1) thru (13, 5) above, Egs. (13.7), (13.8), and (13.9) in

Section A,13 become the following:

S
P P __P
£ =. - £ )
i = (P Ers) +k§1 K (13. 6)
P '.2 P __P ' L2 ZS;
Pyj = Ka¥s T " (3cy578y5 TRy @)t L KTy (13. 7)
_ P _D
%zj - _(aczj gzj) * ?D ka.]L:.[-"jk (13. 8)
k=1
where
1 2
_2 max _bmax r _ 1 e
2 Timp O , k, =51+ ) (13. 9)
¢ s max pmax c

Again note in Eq. (13.7) that the ij hinge force component has
the centrifugal force term k'swz subtracted off,
B.14, Block 14

The dimensionless hinge force components for the jth blade, as
given in Eqs. (13.6), (13.7), and (13. 8) in Seci;ion B.13 must be resolved
from blade-~span axes (P-frame) to rotating shaft axis (R-frame) compo-
nents using the matrix [ Trp.] T , where | Trp.] is given in Eq. (2.18),
Section A.2.2, Thus we obt:.in ’
fll;xj= fl;’xj cosﬁj+(f£y_j -k'sm:)si.néjcosﬁ j+f11:;,zjsi.n6 J.si.n{.’; j+k'sw§sin§jcos[3 j

(14.1)
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T 1 2 _ P . P t 2 P .
fpyj-kswscosﬁjcosf} j'~_fojsm6j+(£Py'j ksws)coséjcos(B J.+£E‘jcos<5jsmﬁj

(14.2)

T k' o )sinp +£P k' ©25i 14. 3
sz_' (fPYj kSwS )smﬁj szcosﬁj s mssmﬁj ( . )

We note that k's as defined in Eq. (13.9) of Section B.13 is equal approxi-
mately to ks /2 which from Eq. (8. 5) in Section B. 8 is equal to

/2% . We recall that & is the maximum rotor spin
smax  pmax s max

velocity and Qp max is the maximum angular velocity of the rotor-blade

components after £ has been subtracted. Thus £ /29 (i.e.,
s s max p max

1
ks ) will be likely to exceed unity by an appreciable amount, On the other

hand k's only enters Eqs. (14.1) and (14. 3) when multiplied by sin Gj or
sinf I so that the product should remain less than unity. Of course the
k's wz’ cosijcos[Sj on the left side of Eq. (14, 2) will be much larger than
unity. This is exactly why we compute directly the small difference

]
f .-k wzcos6.cosﬁ .o
PY} s s J J

The dimensionless force components given in Eqgs, (14.1), (14.2),
and (14, 3) are resolved from rotating shaft axes (R-frame) to shaft axes

(S-frame) using the transformation matrix [ Tsr ] T, where [ TSr ] is
j j
given in Eq. (2.10), Section A.2,10. Thus we have

s t 2 r r 1 2 T 2

.4tk w cosy .=f_ .siny .- .~k ® cosb cosP .)cosdy +k w (l-cosd.cosP.)cosw.

fPXJ 5 s llJJ Pxj lIJJ (fPYJ 5 s J ﬁJ) LpJ 8 5( J ﬁJ) ° LpJ
(14. 4)

s

LIV
f° .-k w siny . =f
Pyj s's LpJ

T

T v 2 T2
.cosy ,+( .~k w cosd.cosP .)sinb .-k w (l-cosbcosP.)sind.
Fxj LIJJ fPYJ s s j ﬁJ) lJJJ s sl 3°° ﬁJ) leJJ

(14. 5)

2 .= szj (14.6)
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Note in Eqs. (14. 4) and (14, 5) that the large k's w: terms have
been subtracted from the left side of each equation and that the remaining
k;mz terms on the right side are each multiplied by (1-coséjcos[3 j),
which is small compared with unity,

Next we sum the dimensionless force components due to the jth

blade, as given in Eqs. (14.4), (14. 5), and (14.6), over the N blades,

We continue to use 2p m £2 Q as the normalizing factor. Thus
c smax pmax
let
s - s
£ = FRx ;s _ FRy
Rx 2p mQ Q ' "Ry  2p mQ Q ’
c s max pmax c smax pmax
FS
s Rz
fRz T 2p mQ Q (14.7)
c S max pmax
Then we have
s 1 2
f N k o N
Rx 1 > (S v 2 ]
== f - Z; . . O
N Nj=1 (ij+kswscosq;j) N = COSL[JJ (14. 8)
>
0
1
f:(z 1 g s 2 kswi g;
- . - L} . .
N Nj=1 (ﬁ:’}’j k&Bmssrﬂqj_i)-*- N j=1 squj (14.9)
>
0
flslz 1 al s
= =% X i ' (14.10)

j=1
But because the N blades are equally spaced in azimuth along 27 radians,
N N
27 coquj:O and Z>1 sianj=0. I.e., the principle centrifugal force terms
j=1 =
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acting on each blade cancel out. Only if a blade is lost do these terms
need to be included in Eqgs. (14. 8) and (14. 9). Thus optimal scaling is
preserved,

Finally, the S-frame dimensionless force components in Eqs.
(14. 8), (14.9), and (14.10) above are transformed to hub and hence body-
axis components using the matrix [ Ths] T, where [ Ths] is given in

Eq. (2.3). Thus

1 b 1 s . l s e e e 1. s s
N fo = Nfo cos i, + N fRY sm1¢sm ig +N£chos 1¢sm i, (14,11)
1 b 1l s . 1l.s i
NfRy = NfRy cos 14)- NfRz sin 1¢ (14.12)
1 b 1l s .. 1l s - - 1l .s R -
NfRz = - Nfo sin 16+NfRy sm1¢cos iy + Nfchos 1¢ cos i, (14.13)

B,15. Block 15

The hinge force components FX _and F* . along the x .and z _,
Pxj Pzj rj rj

R-frame axes for the jth blade were normalized in Section B. 14 by dividing

by ZpCm Q This suggests that we normalize the jth blade

Q .
S max pmax

hinge moment components Mll;xj and Mlizj by dividing by Zepc m QS nl:1a.x Qp max

Thus let
MF M
r hxj r hzj

mh.xj= 2ep : rrlhzj= Zepch

oy 3 (15.1)
¢ smax pmax s max pmax
Then from Eqgs. (15.2) and (15, 3) in Section A, 2,15 the equations for

dimensionless moment components at the jth blade hinge become

K K, Q B.
T E é S max J r
= - 5.+ .
m, ; kh [ Vi ﬁj + Jcos Py (15.2)

p max p max S max
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r =--—kh—[f(5)+snéF'-]- (15. 3)
L Mpma.x j Bn o8 :S:)xj .

where

M max
b (15. 4)

kh= 2ep m Q2 Q
c s max pInax

Here the terms inside the square brackets on the right side of Eqs, (15.2)

and (15, 3) have already been computed in Eqs. (11.1) and (11. 2), Section 13, 1l.
The dimensionless moment components in Eqs, (15.2) and (15. 3)

are resolved into S-frame axes using [ Tsr] T , where [ Tsr] is given

in Eqs. (2.10). Thus, since m. = 0, we have

hyj
s T .
.= m., . sin, 15. 5
mhx_] hxj LP_] ( )
s r
. =m, .cosy. 15.6
Phy; hxj LpJ ( )
5 T
mhzj = mhzj (15.7)

Next we sum the hub-moment components of Eqs, (15.5), (15.6), and
(15.7) over all N blades to obtain the total dimensionless hub moment
components. Thus

S

N
M 1 5
- = ? M (15. 8)
j=1
m’ N
_hy _ 1 s
N N 4 mhyj (15.9)
j=1
s
N
ha 1 s
— =X E My (15.10)
Jj=1
where as before ZepC m Qs max Qp max is still used as the normalizer

97




s

L, m® , m° ., These are
. hy

. . s
for the dimensionless moment components m ha

hx

resolved into hub and hence body axis components using the matrix

T . . .
[ Ths] , where [ Tsh] is given in Egs., (2.3). Thus

b s s s
mll;slx = mll\}x cos ie + ﬂNZ sin i¢ sin ie + n; cos i¢sin ie (15.11)
my ™y ™y
—Nl = —Nl- cos i, -~y sini, (15.12)
hy  whw :
—Ni = - & sinig + —1\?1 sin i, cos iy + I\?z cos i, cos iy (15.13)

The total rotor moment about the aircraft c.g. is the sum of the hub
moment plus the moment due to the rotor force acting at the hub, i.e., as
given in dimensional form in Eqgs. (15.16), (15.17), (15.18), Section A, 2,15,
To normalize the total rotor moment components about the air-
craft c.g. we use 2Nd p m & Q2 , where in Section B, 4 we

max (o4 S max pmax

defined dma.x as the largest of the relative hub to c.g. position-vector

components, %10 Vi oy Hence we let
b
M
b Rx
m = ,
Rx 2Nd p mS« Q
max ¢ Smax pmax
9, Mb
ml) - RY
Ry 2Nd p mf Q ?

max’ C S max pmax

b
o Rz 15.14)
™Rz~ 2Nd___p mQ 2 (15.
max ¢ S max pmax

Then Eqs. (15.16), (15.17), and (15.18) in Section A, 2,15 becoms
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nnb fb fb
mb_(e)hx+(YH)Rz_(zH)Ry
Rx ~ ‘'d N d N d N
max max max
rnb Z fb x fb
rnb = ( e ) hy + H ) Rx ( H ) Rz
Ry 'd N d N "'a N
max max max
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Ah:x’Ahy'Ahz
A,

ri

A8 S A8
' ry’ rz
r

A LA AT
rxj’ ryj’' rzj
A

pi.

ArJ T T

SAT .
PX} PY) P2

Pxj’" pyi’ pzj
A
ci,
Pl P AP
cxj’ Tcyi’ czj
A
18
%px’ *by bz
*hx’ *hy’ *hz
s s _s
rx’ ry’ rz
r r r
a _.,a _,a .
rxj’ ryj’ rzj
r r r
- A
PX]  PYJ Pz
aP ,aP _,aP |
PxX)" PYJ) PZj
aP ,aP  aP
cxj’ Tcyj’ “ezj
B-frame
BlS

LIST OF SYMBOLS

Acceleration of B-frame w.r.t, I-frame

A .
Components of bi along X s Vo 2y body axes
Acceleration of H-frame w.r.t. I-frame.
Components of Ahi along X, » ¥y s %y, 3Xes.
Acceleration of R-frame w.r.t. I-frame.

A
Components of i along X sV B axes.
Components of Xri alongx .y .,z

rj, ri’ rj

Acceleration of Pj ~frame w, r.t., I-frame.

axes,

Components of A . alongx . y_.,z_.axes,
p1j rj, i’ rj
Components of Kpi along x
i

.sY .y Z_. axes,
P} "P) PJ

Acceleration of the c.g. of the jth blade w.r.t. I-frame.

A
Components of ci. along x_.,v_., zpj axes,

j S A

Constant in the blade geometric pitch equation.

Dimensionless components of Kb

; along x,vy, z axes,

: - Z ]
Dimensionless components of hi along Xy s Yy 7y 2XeS

Dimensionless components of Ari along X Y s 2  axes.

Dimensionless components of A ., alongx . y .,z _.axes.
ri rj, ri’ rj

Dimensionless components of A

Dimensionless components of Kpi along x

Dimensionless components of Kci along x
j

The aircraft body-axis frame (xb, Vo zb) .

Constant in the blade geometric pitch equation.
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pi, along xrj’ Yrj

pi’ ¥ pi’

. -
pj* 'pi’ “pj

z
'Tr

Z

. axes,
J

. axes,

P]

axes,



djk

1k

FRx ’ FRy’ FRz
S s s
Rx' FRy’ FRz

F

FPj

F
Fij' FPyj’ Pzj

r ,FL ,FE .
FPx_]’FPyJ' Pzj
7S s s

fbx’ fby’ £bz
b b b

fo’fRy’ Rz
s s s

xRy Rz

i R Epjk

tpxj fpys 'Pag

r r r
i’ Ipyi* Pz

Tjk’ FRjk’ Fij

Pxj' T Pyj’ ¥ Paj

Drag coefficient for kth segment of jth blade.
Lift coefficient for kth segment of jth blade,
Drag of the kth segment of jth blade.

Largest of x (hub displacement from c.g.).

1 YH %1
Position of hinge point for jth blade w. r.t. the hub,
Magnitude of :j'

Total external force acting on aircraft, less gravity.
Components of Fb along X Y %y body axes.

Total force on aircraft due to rotor system,
Components of FR along X0 Ve %y body axes.

Components of FR along xs, Vg Zg axes,

Aerodynamic forces for j blade, kth segment along

X .,¥ ., % ., axes.
Pl "Pl Pl

Hinge shear force.

Components of FP along x
j
P,
J

.Y _.sZ_, axes,
pJ YPJ pJ

Components of F_ along er’ Yrj’ zrj axes.

Components of F along xs, ys, zs axes,

T
D1@ens ionless components of Fb along X Ve 2y axes.

Dimensionless components of FR along LN A axes.,

Dimensionless components of FR along x .,V 2, axes,

Dimensionless components of aerodynamic force for
jth blade, kth segment, along xp, Yp’ zp axes,

Dimensionless components of ¥_ alongx .,y .,z _. axes,

P, Py "pPi° P
Dimensionless components of FPj along xrj’ Yrj’ zrj axes,
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g8,

’ Yn
] S
’gy’gz

r
’gzj

Tr
P.,gP.,gP.
gXJ gYJ gZJ

B,

ey

i,
P J
H-~frame

h

I-frame
[1]

I ,I ,1
XX’ Yy 2z
I

[1 ]

%

Dimensionless components of FP along X Y s %, axes.

)
Constant in equation for hinge lagging moment,

Function in equation for hinge lagging moment.
Gravity acceleration vector.
Components of Galong X, , Yy s %y, axes.
Components of _C:ta,long XY s B aXes.
Components of Galong xrj’ Yrj’ zrj axes,
Components of Galong x_, .y Z_. axes,

P & *pi* Vi’ *pi
Sea level gravity acceleration magnitude.
Dimensionless components of Galong X 0 Vo %y BXES.
Dimensionless components of -(.:ialong X _» ¥ s 2  aXES.
Dimensionless components of aalong X .,V _.,Z_.axes,

ry°'r} rj

Dimensionless components of aalong X zpj axes.

pj’ ¥ pi’

Angular momentum of aircraft about c.g. (not in-
cluding the rotor blades).

Angular momentum of jth blade about hinge point Pj

The hub -axis frame, Xy Y0 2
Altitude

The inertial reference frame (non accelerating
atmosphere).

Aircraft inertia matrix about c. g. (not including the
rotor blades).

Principle moment of inertia components of [ I] along
SRERER

Blade inertia matrix about hinge.

Components of | I along x ,z axes,
2 [ 1] g% .2,
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Unit vectors along xb,xs,xrj,x

Pitch and roll angles of shaft axes w.r.t. hub (and
hence body) axes.

. axes,
J

Index denoting blade number.

J

Unit vectors along Yy Ygs Yr"ypj axes,

Constants in the blade geometric pitch equation.

Constants in equation for hinge flapping moment.

Unit vectors along =z

Scaling
Scaling
Scaling
Scaling
Scaling
Scaling
Scaling
Scaling
Scaling
Scaling
Scaling
Scaling
Scaling
Scaling

Scaling

constaﬂt,
constant,
constant,
constant,
constant,
constant,
constant,
constant,
constant,
constant,
constant,
constant,
constant,
constant,

constant,

b
Eq.

Eq.
Eq.
Eq.
Eq.
Eq.
Egq.
Eq.
Eq.
Eq.
Eq.
Eq.
Egq.
Eq.

Eq.

lzs’z 'Iz

Tj

(13,9), Ap.

(5.6), Ap.

(13.4), Ap.

(1.10), Ap.
(9.7), Ap.
(1;10), Ap.
(15.4), Ap.
(1.15), Ap.
(9.7), Ap.
(7.7), Ap.
(7.7), Ap.
(4.9), Ap.

(8.5), Ap.

(13.9), Ap.

(11. 3); Ap.

. axes,
3

B.

B.

B.

Aircraft mass, not including rotor blades.
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MR

Mll?{x’ M; ! Mtl)iz
I\_/Ih

M'}Dlx’ sz’ M?lz
M}ix’ Ml'sxy’ Mlslz
ﬁh

2l
.

aero

2l

hinge

|

Bj

gl

PJ

M .M
PXJ), Pz

m

px’ mby’ Mz
b b b

Trx’ MRy’ mRz
b b

Mhx? "%y’ Tz

s S s
P’ 1.nhy' e

Total external moment acting about aircraft c. g.
Components of Mb along X, » V0 5y, BX€S.
Moment about aircraft c. g. due to rotor system.
Components of MR along X ¥} s %, aXes.
Moment about hub due to rotor system,
Components of Mh along X, 2 Vy s %y aXes.
Components of Mh along X 1Y s B aXes.

Moment about hub due to jth blade.

Components of 1\_/1 along xs, Ys’ z axes.

h,
J

h,
J
Flapping hinge moment for jth blade.

Components of M along xrj’ Yrj’ er axes,

Lagging hinge moment for jth blade.

Mach number of jth blade, kth segment.

Blade moment about hinge due to aerodynamic forces.
Blade moment about hinge due to hinge moments.
Total moment acting about hinge on jth blade.

Total moment (excluding gravity) acting about hinge
on jth blade.

Components ofI\_/I along x .,z . axes,
P p 08 Fpj Ppj
Blade mass
Dimensionless components of 1\_/[b along X0 Ve 2y axes,
Dimensionless components of 1\_/IR alongxb, ¥, » %, axes.

Dimensionless components of Mh along X s Yy %y 3Xes.

Dimensionless components of M, along XY, ZS axes,

h

104



™%’ Thyj’ Thzj

r T

ki’ Thyj’ Thaj

m ., m_ .
px) - Pz}

Pj -frame

P Q0 By,
PS QS RS
rrr

Pr.,Qr.’Rr.
ry r} 1)

P P P
Py Qg B

Dimensionless components of I\_Iih along X, Y s By 2XeS.

j

Dimensionless components of f\-_d.h along xrj’ Yrj’ zrj axes,

J

Dimensionless components of M_. along x .,z _. axes.
Pl P} Pl

Total number of blades in rotor system.

The jth blade span axis frame, x_. . ..
] P pi’ ' pi* “pi

Components of ?%i along X Vi Zp axes,
Components of arialong X s Vgs Zg 3XeS,
Components of ari along xrj' Yrj’ zrj axes.
pj’ ij’ zpj axes.

Components of Epi along x
j

Components of -ﬁri along x

.y .sZ ., aXes,
i’ Vpi* “pi

Dimensionless components of Qbi along X0V &y axes,

Dimensionless components of Qri along Xo» Ygr zg axes,

Dimensionless components of-ﬁ .alongx .,y .,2_.axes,
ri rj’'ri’ rj

Dimensionless components of §ri along x_.,vy .,zpj

P3 " PJ

Dimensionless components of Q.
Plj PJ

The jth rotating shaft-axis frame, xrj’ YV s %

rj’ “rj’

Position of hub w.r.t. aircraft c. g.
The shaft axis frame, x_ ,¥. ,2_.
8’’s’' 8
Distance north, east, and downward.
Number of segments per blade,

Matrix for transformation from body to earth axis
components,

Matrix for transformation from earth to body axis
components,

Matrix for transformation from H to S-frame axis
components,
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€ *pj* Ypi* *pj

axes,

axes,



Ub’ Vb'Wb

b b
U Vllz;b ' Whb

us, v3 ws
r I‘ T
ut. v W
rj’ rj
r, r.,Wr.
pi’ pi’ pj
uP, vl WP,
pi’ pi’ pj
Yk Upjir YRk
Wy Vs W

b b b

Ynb* Vhb* Y b
us ,VS ,Ws
rs rs rs

r r r

UL,V LW,
pi’ pi’ Pj
up.,vp.,wp.

pi’ P’ Pj
Uik’ "Rjk’ “Pijk
Vbi

Vib

Vhi

Matrix for transformation from S to H-frame axis

components,

Matrix for transformation from S to Rj ~-frame axis

components,

Matrix for transformation from Rj to S-frame axis

components,

Matrix for transformation from Rj to Pj -frame axis

components.

Matrix for transformation from Pj to Rj -frame axis

components,
Components of V
Components of V.
Components of Vr
Components of ?ri along x
Components of v .
Plj
Components of V.
j3
J
along x

Components of V.
Dimensionless components
Dimensionless components
Dimensionless components
Dimensionless components

Dimensionless components

Dimensionless components

rj’ Yl‘j’ ZI'
along X

along x . 9% .
& *p3* Ypj* “pj

. 3 & .
jk pi’ Vi’ “pj

; along X s Vo %, aXes.

b along X s V0 %y aXes.

. along x
i g %Xg

" 9 Z  aXes,
2 Vgr Zg

. axes,
J

j’yrj' er axes.

axes.
axes,

of V i along X s Yy » % axes.

of Vhb along X Y0 %y aXes.
of Vri along X_» Y s 2  aXeS,

of V_. along x
pi

j I‘j’ Yrj’ zr

. axes,
J

along x . ., 2 . axes,
& *pj* Yp3’ ®pj

- J
of V,, along x ., axes,
jk € *p3* Vi’ “pj

of\_f.
pi

Velocity of B-frame, LD AN axes.

Velocity of H-frame w.r. t.

Velocity of H-frame,
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*n' Y’ %h

B-frame.

axes,



<

i R-£f X . .
Velocity of rame, xrj , er, er axes

.s e .
pj’ 7 pj’ “pj

Velocity of c.p. of kth segment, jth blade.

Velocity of Pj-frame, b4 axes,

Magnitude of ij

Dimensionless ij

Body axes (B-frame)

Hub axes (H-frame)

Shaft axes (S-frame)

Rotating shaft axes, jth blade (Rj frame).

Rotating shaft axes with origin translated to Pj.
Blade-span axes for jth blade (Pj frame).
Displacement from jth blade hinge to kth segment c, p.
Angle of attack, jth blade, kth segment,

Angle ofattack for drag and lift coef, computation.
Flapping angle, jth blade.

Angle of attack yaw angle, jth blade, kth segment.
Swash plate rotation angle.

Lagging angle, jth blade.

Body axis pitch angle.

Blade twist angle, jth blade, kth segment,
Yawedblade twist angle, jth blade, kth segment.
Displacement of jth blade, kth segment c.p. w.r.t. hinge.

Displacement of jth blade c.g. w.r.t. hinge.
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ol

p max

Body-axis bank angle.

Aerodynamic angle of attack, jth blade, kth segment,
Body-~axis heading angle.

Azimuthal angle for jth blade-span axes,

Angular velocity of B-frame,

Angular velocity of H-frame (same as B-frame).
Angular velocity of S-frame (same as B-frame).
Angular velocity of Rj-fra.me.

Angular velocity of Pj-frame.

Angular velocity of Rj~fra.me w.r.t. S-frame.

Normalizing factor for dimensionless blade-span
axis angular velocity components,

Dimensionless Qs .
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